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Abstract

We introduce two architectures, the Tensor Product Recurrent Network (TPRN)
and the Tensor Product Generation Network (TPGN). In the application of TPRN,
internal representations — learned by end-to-end optimization in a deep neural net-
work performing a textual QA task — are interpretable using basic concepts from
linguistic theory. This interpretability is achieved without paying a performance
penalty. In another application, image-to-text generation or image captioning,
TPGN gives better results than the state-of-the-art long short-term memory (LSTM)
based approaches. Learned internal representations in the TPGN can also be
interpreted as containing grammatical-role information.

1 Introduction

The difficulty of explaining the operation of deep neural networks begins with the difficulty of
interpreting the internal representations learned by these networks. This difficulty could in principle
be reduced if deep neural networks were to incorporate internal representations that are directly
interpretable as discrete structures; the categories and relations of these representations might then be
understandable conceptually.

The work reported here shows how approximately discrete, structured distributed representations
can be embedded within deep networks, their categories and structuring relations being learned
end-to-end through performance of a task. The tasks we address are question-answering for the
SQuAD dataset [20] and caption-generation for the MS-COCO data [5].

The proposed capacity for distributed representation of structure is provided by Tensor Product
Representations, TPRs, in which a discrete symbol structure is encoded as a vector systematically
built—through vector addition and the tensor product—from vectors encoding symbols and vectors
encoding the roles each symbol plays in the structure as a whole [22, 24, 25].

The first model presented here is built from the BIDAF model proposed in [21] for question answering.
We replace bidirectional RNNs built from LSTM units [11] with ones built from TPR units; the
architecture is called the Tensor Product Recurrent Network, TPRN [16]. TPRN learns the vector
embeddings of the symbols and roles, and learns which abstract symbols to deploy in which abstract
roles to represent each of the words in the text-passage and query inputs.

∗This work was carried out while PS was on leave from Johns Hopkins University. LD is currently at Citadel.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Question/Document 
co-attention in the TPR space

…

w1 w2 wN q1 qM

…

…

document question

a1 a2 aT

answer

𝑣(௧)S

R

𝑎ௌ
(௧)

𝑎ோ
(௧)

𝑣(௧ିଵ)

(𝑊ௌ,𝑊ோ)

a TPR unit

v: TPR 
S: symbol embedding
R: role embedding
a: filler attention 

and role attention
W: transition weights
w (q): input word

𝑤௧

Figure 1: Block diagram of the proposed TPRN question-answering model.

A second model we discuss uses the structure of TPR computation to inform the design of an
architecture for natural language generation, the Tensor Product Generation Network TPGN, which
we apply to image captioning. Again it turns out that the structural roles learned by end-to-end deep
learning can be interpreted grammatically.

The models presented here show how learning to perform a typical natural language task can lead a
deep learning system to create representations that are interpretable as encoding abstract grammatical
concepts without ever being exposed to data labelled with anything like grammatical structure.

The remainder of the paper is structured as follows. Section 2 introduces TPR and details how it
is used in the general TPRN architecture we propose here. Experimental results applying TPRN to
question-answering with SQuAD are presented in Section 2.1. The focus of this work is addressed in
Section 2.2 which presents interpretations of the representations learned by TPRN. Section 3 presents
the TPGN architecture and applies it to caption generation with the COCO dataset; experimental
results are presented in Section 3.2. Section 4 briefly discusses related work and Section 5 concludes.

2 TPRN: The Tensor Product Recurrent Network
In the SQuAD dataset, a text passage and a question are presented as input, and the model’s output
identifies a stretch within the passage that contains the answer to the question. The proposed
TPRN architecture is built in TensorFlow [1] on the Bidirectional Attention Flow (BIDAF) model
proposed in [21]. BIDAF is constructed from 6 layers: a character-embedding layer using CNNs,
a word-embedding layer using GloVe vectors [18], a phrase-embedding layer using bidirectional
LSTMs for embedding words in sentential context [15], an attention-flow layer using a special
attention mechanism, a modeling layer using LSTMs, and an output layer that generates pointers to
the start and end of an answer in the paragraph. (See Fig. 1 of [21].)

The first version of TPRN replaces the LSTM cells forming the bidirectional RNN in the phrase
embedding layer with recurrent TPR cells, described next: see Fig. 1.

This TPRN model enables the phrase-embedding layer of the model to decide, for each word, how
to encode that word by selecting among nS symbols, each of which it can choose to deploy in any
of nR slots in an abstract latent structure. The symbols and slots have no meaning prior to training.
We hypothesized that the symbol selected by the trained model for encoding a given input word
will be interpretable in terms of the lexical-semantic content of the word (e.g., Australia refers to a
place) while the slots will be interpretable as grammatical roles such as subject/agent, object/patient,
question-restrictor phrase. In Section 2.2, we will test this hypothesis; we will henceforth refer to
“roles” rather than “slots”. In other words, our hypothesis was that the particular word tokens for
which a given symbol was selected would form a lexical-semantically-related class, and the particular
word tokens for which a given role was selected would form a grammatically-related class.
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To function within the network, the symbols and roles must each be embedded as vectors; assume
that we use vectors of dimension dS and dR for symbols and roles respectively. These embedding
vectors are designed by the network, i.e., they are learned during training. The network’s parameters,
including these embeddings, are driven by back-propagation to minimize an objective function
relevant to the model’s question-answering task. The objective function includes a standard cross-
entropy error measure, but also quantization, a kind of regularization function biasing the model
towards parameters which yield decisions that select, for each word, a single symbol in a single role:
the selection of symbols and roles is soft-selection, and we will say that the model’s encoding assigns,
to the tth word w(t), a symbol-attention vector aS(t) and a role-attention vector aR(t).

The quantization term in the objective function pushes towards attention vectors that are 1-hot. We
do not impose this as a hard constraint because our fundamental hypothesis is that by developing
approximately discrete representations, the model can benefit from the advantages of discrete com-
binatorial representations for natural language, without suffering their disadvantage of rigidity. We
note that while the attention vectors are approximately 1-hot, the actual representations deployed
are attention-weighted sums of fully distributed vectors arising from distributed encodings of the
symbols and distributed embeddings of the roles.

In the encoding for w(t), the vector s(t) encoding the symbol is the attention-weighted sum of the nS
possible symbols: s(t) =

∑nS

j=1[aS
(t)]jsj = SaS

(t) where sj is the embedding of the jth symbol in
RdS , which is the jth column of the symbol matrix S. Similarly, the vector encoding the role assigned
to w(t) is r(t) =

∑nR

k=1[aR
(t)]krk = RaR

(t), with rk the embedding of the kth symbol in RdR and
the kth column of the role matrix R.

The activation vector v(t) that encodes a single word w(t) combines the word’s symbol-embedding
vector, s(t), and its role-embedding vector, r(t), via the outer or tensor product: v(t) = aS

(t)aR
(t)> =

aS
(t) ⊗ aR

(t). We say that v(t) is the tensor product representation (TPR) of the binding of symbol
s(t) to the role r(t). A convenient expression for v(t) is:

v(t) ≡ s(t)(r(t))> =
(
SaS

(t)
)(

RaR
(t)
)>

= S
(
aS

(t)aR
(t)>

)
R> = SB(t)R> (1)

The matrix B(t) ≡ aS
(t)aR

(t)> is the binding matrix for word w(t), which encodes the (soft) selection
of symbol and role for w(t). This matrix has dimension nS × nR; the actual representation sent to
deeper layers, v(t), has dS × dR embedding dimensions. (E.g., in one particular model discussed
below, the dimensions of B and v(t) are respectively 100× 20 and 10× 10. )

aS
(t) and aR

(t) in (1) are computed by:

aS
(t) = f(WS

inw
(t) + WS

recvec(v
(t−1)) + bS) (2)

aR
(t) = f(WR

inw
(t) + WR

recvec(v
(t−1)) + bR) (3)

where vec(.) is the vectorization operation, f(.) is the logistic sigmoid function, w(t) is the tth word
and b is a bias vector. Equation (1) is depicted graphically in the ‘TPR unit’ insert in Fig. 1. During
I → O inference, in the forward-directed RNN, the representation v(t−1) of the previous word is
used to compute the attention vectors aS(t), aR(t) which in turn are used to compute the representation
v(t) of the current word. (The same equations, with the same transition weights and biases, apply to
the words in both the passage and the query.) v(t) is initialized to zero.

Because each word is represented (approximately) as the TPR of a single symbol/role binding, we
can interpret the internal representations of TPRN ’s phrase-embedding layer once we can interpret
the symbols and roles it has invented. Such interpretation is carried out in Section 2.2.

The interest in TPR lies not only in its interpretability, but also in its power. The present TPRN model
incorporates TPR to only a modest degree, but it is a proof-of-concept system that paves the way
for future models that can import the power of general symbol-structure processing, proven to be
within the scope of full-blown TPR architectures [24, 23]. TPRN is designed to scale up to such
architectures; design decisions such as factoring the encoding as v(t) = aS

(t)aR
(t)> = aS

(t) ⊗ aR
(t)

are far from arbitrary: they derive directly from the general TPR architecture.

As the name TPRN suggests, the novel representational capacity built into TPRN is an RNN built of
TPR units: a forward- and a backward-directed RNN in each of which the word w(t) generates an
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encoding which is a TPR: v(t) = SB(t)R>; the binding matrix B(t) varies across words, but a single
symbol matrix S and single role matrix R apply for all words {w(t)}. Both the S and R matrices are
learned during training. In addition, a standard LSTM gating mechanism operates over v(t).

It remains only to specify the quantization function Q (4) which is added (with weight cQ) to the
cross-entropy to form the training objective for TPRN : Q generates a bias favoring attention vectors
aS

(t) and aR
(t) that are 1-hot.

Q = Qa(aS
(t)) +Qa(aR

(t));Qa(a) = Σi(ai)
2(1− ai)2 +

(
Σi(ai)

2 − 1
)2

(4)

The first term of Qa is minimized when each component of a satisfies ai ≡ [a]i ∈ {0, 1}, and the
second term is minimized when ‖a‖22 = 1; their sum is minimized when a is 1-hot [3].

2.1 Experiments
For the details of the experiments applying the TPRN model to the question-answering task of the
Stanford’s SQuAD dataset [20], see [16]. The results of primary interest are the interpretations of the
learned representations, discussed in Section 2.2.

Performance results of our model compared to the strong BIDAF model proposed in [21] are
presented in Table 1. We compared the performance of single models. For the BIDAF baseline, we
ran the code published in [21] with the advised hyperparameters. We report results for three versions
of the TPRN model: TPRN1 uses TPRN units only in the phrase-embedding layer, while TPRNall
uses TPRN units to replace all the LSTMs in BIDAF. In the “deep TPR” model, dTPRNall, all
LSTMs in BIDAF are replaced by gated recurrent networks in which the cells take the form shown
in Table 2. In place of the outer product, at each time s the symbol vector fs and (fixed) role vector r
are inputs to a learned linear transformation E which binds them together to form the binding vector
bs, of dimension db; bs is the output of the cell. As in [26], the combining transformation E should
be invertible, enabling the (learned) unbinding linear transformation D: with input [bs; r], D should
output fs, which is the target vector in an L2 penalty in the loss function during learning. (A sigmoid
non-linearity follows matrix multiplication by both E and D.)

In the TPRN1 model reported, we set the number of symbols (nS) and roles (rR) to 600 and 100
respectively and the embedding size of symbols (dS) and roles (dR) to 15 and 10. In TPRNall,
nS=100, nR=20, dS=10=dR. For dTPRall: nS=200 nR=50 db=60, dS=12, dR = 4.

From Table 1 we observe that TPRN1 outperforms BIDAF by 1 point on the validation set and
slightly underperforms BIDAF on the test set. The models with all LSTMs replaced by TPRNs
achieve similar, but slightly lower, performance. Overall, TPRN gives results comparable to those
of the state-of-the-art BIDAF model. Moreover, as we will now see, our model offers considerable
interpretability thanks to the structure built into TPRs.

Table 1: Performance on development and test sets

Single Model EM(dev) F1(dev) EM(test) F1(test)
BIDAF [21] 62.8 73.5 67.1 76.8

TPRN1 63.8 74.4 66.6 76.3
TPRNall 61.2 72.1 64.3 74.5
dTPRNall 63.2 73.4 65.9 75.8

Table 2: deep TPR cell

Incremental build-up of the proposed architecture 
➀ single binding circuit: binding/encoding weights E are trained so as to enable unbinding/decoding D (as in autoencoder) 

b = E(f, r); f = F:j ∈RdF  ∃j∈1:nF; F = filler matrix, dF × nF 
f ̂ = D(b, r); r = R:k ∈RdR  ∃j∈1:nR ≡ N; R = role matrix, dR × nR 
local training objective: min Δ( f, f ̂)   (where Δ is some difference measure) 

➁ multiple-binding ψTPR cell in representation of symbol structure s  
bk

s = E( f k
s, rk) ∈ RdB ≐ R100  ∀k∈1:nR ≡ N ≐ 20; rk = R:k ∈ RdR ≐ R10, R = role matrix, dR × nR ≐ 10 × 20 

f k
s ≅ F:j(k) ∈ RdF ≐ R10  ∃j:1:N → 1:nF ≐ 100; F = filler matrix, dF × nF ≐ 10 × 100  

minimal E = σ ∘ WE , WE ∈ R(dF + dR)  × dB ≐ R20 × 100  
T s = C({bk

s}k∈1:N) ∈ RdT    in simplest case: C = Σ (shown as  ⊕  in the diagram below), then dT = dB  
output of the cell to rest of network: T s  
f ̂ks = D(T s, rk) ∈ RdF 

minimal D = σ ∘ WD, WD ∈ R(dT + dR) × dF ≐ R120 × 10 
local training objective: min Σs Σk Δ( f k

s, f ̂ks)    (added to global end-to-end task-based objective function) 
f ̂ks & D used during training only (not during I → O computation)   

(but a part of the rest of the network could choose to learn D if unbinding proves useful for the global training objective) 
(D can be used to interpret the activation patterns bk

s) 
f k

s = Fk(x)  where x = concatenated activation vector of all layers sending input to the cell ∈ Rdx  
minimal Fk = σ ∘ WF, WF ∈ RdF × dx ≐ R10 ×  dx 
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2.2 Experimental interpretations of learned TPRs
Here we consider interpretation of the TPR roles aR

(t) assigned to the words w(t) of the query
input (denoted q(t) in Fig. 1) in the forward-directed TPR-RNN of a version of TPRN1 in which
nS = 100, nR = 20; dS = 10 = dR. We consider which word tokens w(t) are ‘assigned to’ (or
‘select’) a particular role k, meaning that, for an appropriate threshold θk, [âR

(t)]k > θk where âR
(t)

is the L2-normalized role-attention vector.
A grammatical category—Part of Speech: Determiner ∼ Role #9. The network assigns to
role #9 these words: a significant proportion of the tokens of: the (76%), an (52%), a (46%), its
(36%) and a few tokens of of (8%) and Century (3%). The dominant words assigned to role #9
(the, an, a, its) are all determiners. Although not a determiner, of is also an important function
word; the 3% of the tokens of Century that activate role #9 can be put aside. Quantitatively,
p(w is a determiner|w activates role #9 to > 0.65) = 0.96.
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A semantic category: Predicate (verbs and adjectives) ∼ Role #17. The words assigned to role
#17 are overwhelmingly predicates, a semantic category corresponding to the syntactic categories of
verbs and adjectives [e.g., under semantic interpretation, J runs→ runs(J); J is tall→ tall(J)] . While
the English word orders of these two types of predication are often opposite (the girl runs vs. the tall
girl), the model represents them as both filling the same role, which can be interpreted as semantic
rather than syntactic. Quantitatively, p(w is a verb or adjective|w selects role #17) = 0.82.
A grammatical phrase-type: wh-operator restrictor ‘phrase’ ∼ Role #1. Role #1 is assigned
to sequences of words including how many teams, what kind of buildings, what honorary title. We
interpret these as approximations to a wh-restrictor phrase: a wh-word together with a property that
must hold of a valid answer—crucial information for question-answering. In practice, these ‘phrases’
span from a wh-word to approximately the first following content word. Other examples are: what
was the American, which logo was, what famous event in history.

CORRECTING A PART-OF-SPEECH (POS) TAGGER’S LABELING USING THE LEARNED ROLES

When Doctor Who is not a name: Role #7. The TV character Doctor Who (DW) is named many
times in the SQuAD query corpus. Now in . . . DW travels . . . , the phrase DW is a proper noun
(‘NNP’), with unique referent, but in . . . does the first DW see . . ., the phrase DW must be a common
noun (‘NN’), with open reference. In such cases the Stanford tagger [13] misclassifies Doctor as an
NNP in 9 of 18 occurrences. In . . . the first DW serial . . ., first modifies serial and DW is a proper
noun. The tagger misparses this as an NN in 37 of 167 cases. Turning to the model, we can interpret
it as distinguishing the NN vs. NNP parses of DW via role #7, which it assigns for the NN, but not the
NNP, case. Of the Stanford tagger’s 9 errors on NNs and 37 errors on NNPs, the model misassigns
role #7 only once for each error type. The model makes 7 errors total while the tagger makes 46.

When Who is a name: Role #1. In Doctor Who travelled, the word Who should not be parsed as a
question word (‘WP’), but as part of a proper noun (NNP). The Stanford tagger makes this error in
every one of the 167 occurrences of Who within the NNP Doctor Who. The TPRN model, however,
usually avoids this error. Recalling that role #1 marks the wh-restrictor ‘phrase’, we note that in 81%
of these NNP-Who cases, the model does not assign role #1 to Who (in the remaining cases, it does
assign role #1 as it includes Who within its wh-restrictor ‘phrase’, generated by a distinct genuine
wh-word preceding Who). In the 30 instances of Who as a genuine question word in a sentence
containing DW, the model correctly assigns role #1 to the question word every time. (The model
correctly selects role #1 for non-initial who in many cases.)

For further examples of grammatical interpretations of roles and corrections of the Stanford tagger, for
interpretations of the symbols as lexical-semantic meanings (e.g., professions, geopolitical entities)
and for explanation of model errors resulting from mis-representation of the question, see [16].

3 TPGN: Tensor Product Generation Networks

3.1 The model

In the work we consider next, we propose an approach to network architecture design we call the
TPR-capable method. The architecture we use (see Fig. 2) is designed so that TPRs could, in theory,
be used within the architecture to perform the target task — here, generating a caption one word at a
time. Unlike TPRN, the learned representations are not constrained to be TPRs, but the architecture
treats them as it would treat TPRs.

In Fig. 2, our proposed Tensor Product Generation Network (TPGN) system is denoted N . The
input to N is an image feature vector v and the output of N is a caption. The image feature
vector v is extracted from a given image by a pre-trained CNN. The first part of our system N is
a sentence-encoding subnetwork S which maps v to a representation S which will drive the entire
caption-generation process; S contains all the image-specific information for producing the caption.
(We will call a caption a “sentence” even though it may in fact be just a noun phrase.)

If S were a TPR of the caption itself, it would be a matrix (or 2-index tensor) S which is a sum
of matrices, each of which encodes the binding of one word to its role in the sentence constituting
the caption (see the S bubble in Fig. 2). To serially read out the words encoded in S, in iteration 1
we would unbind the first word from S, then in iteration 2 the second, and so on. As each word is
generated, S could update itself, for example, by subtracting out the contribution made to it by the
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word just generated; St denotes the value of S when word wt is generated. At time step t we would
unbind the role rt occupied by word wt of the caption. So the second part of our system N — the
unbinding subnetwork U — would generate, at iteration t, the unbinding vector ut, which is the dual
of the vector rt embedding the role rt. Once U produces the unbinding vector ut, this vector would
then be applied to S to extract the symbol ft that occupies word t’s role; the symbol represented by ft
would then be decoded into word wt by the third part of N , i.e., the lexical decoding subnetwork L,
which outputs xt, the 1-hot-vector encoding of wt.

Figure 2: Architecture of TPGN, a TPR-capable generation network. “�×” = matrix-vector product.

A crucial property of TPR is that unbinding is effected by the matrix-vector product. The key
operation in generating wt is thus the unbinding of rt within S, which amounts to simply:

Stut = ft. (5)
This matrix-vector product is denoted “�×” in Fig. 2.

Thus the system N of Fig. 2 is TPR-capable. This is what we propose as the Tensor-Product
Generation Network (TPGN) architecture. The learned representation S will not be proven to literally
be a TPR, but by analyzing the unbinding vectors ut the network learns, we will gain insight into the
process by which the learned matrix S gives rise to the generated caption.

What type of roles might the unbinding vectors be unbinding? A TPR for a caption could in principle
be built upon positional roles, syntactic/semantic roles, or some combination of the two. In the
caption a man standing in a room with a suitcase, the initial a and man might respectively occupy
the positional roles of POS(ITION)1 and POS2; standing might occupy the syntactic role of VERB;
in the role of SPATIAL-P(REPOSITION); while a room with a suitcase might fill a 5-role schema
DET(ERMINER)1 N(OUN)1 P DET2 N2. For evidence that our network learns just this kind of hybrid
role decomposition, see [12].

What form of information does the sentence-encoding subnetwork S need to encode in S? Continuing
with the example of the previous paragraph, S needs to be some approximation to the TPR summing
several symbol/role binding matrices. In one of these bindings, a symbol vector fa — which the
lexical subnetwork L will map to the article a — is bound (via the outer product) to a role vector rPOS1

which is the dual of the first unbinding vector produced by the unbinding subnetwork U : uPOS1 . In the
first iteration of generation the model computes S1uPOS1 = fa, which L then maps to a. Analogously,
another binding approximately contained in S2 is fmanr

>
POS2

. There are corresponding bindings for the
remaining words of the caption; these employ syntactic/semantic roles. One example is fstandingr

>
V .

At iteration 3, U decides the next word should be a verb, so it generates the unbinding vector uV

which when multiplied by the current output of S , the matrix S3, yields a filler vector fstanding which
L maps to the output standing. S decided the caption should deploy standing as a verb and included
in S the binding fstandingr

>
V . It similarly decided the caption should deploy in as a spatial preposition,

including in S the binding finr
>
SPATIAL-P; and so on for the other words in their respective roles in the

caption.
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The unbinding subnetwork U and the sentence-encoding network S of Fig. 2 are each implemented
as (1-layer, 1-directional) LSTMs; the lexical subnetwork L is implemented as a linear transformation
followed by a softmax operation.

3.2 Experimental results

3.2.1 Evaluation of the image captioning system

To evaluate the performance of our proposed architecture, we use the COCO dataset [5]. For the CNN
of Fig. 2, we used ResNet-152 [9], pretrained on the ImageNet dataset. The feature vector v has
2048 dimensions. Word embedding vectors in We are downloaded from the web [19]. The model is
implemented in TensorFlow [1] with the default settings for random initialization and optimization
by backpropagation. In our experiments, the dimension of St is 625 × 625; the vocabulary size
V = 8, 791; the dimension of ut and ft is 625.

Table 3: Performance of the proposed TPGN model on the COCO dataset.
Methods METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr
NIC [29] – 0.666 0.451 0.304 0.203 –
CNN-LSTM 0.238 0.698 0.525 0.390 0.292 0.889
TPGN 0.243 0.709 0.539 0.406 0.305 0.909

The main evaluation results on the MS COCO dataset are given in Table 3, which reports the widely-
used BLEU [17], METEOR [2], and CIDEr [28] metrics. In evaluation, our baseline is the widely
used CNN-LSTM captioning method originally proposed in [29] (first line of Table 3). We also
re-implemented the model using the latest ResNet features and report the results in the second line of
Table 3. Our re-implementation of the CNN-LSTM method matches the performance reported in [6],
showing that the baseline is a state-of-the-art implementation. As shown in Table 3, compared to the
CNN-LSTM baseline, the proposed TPGN significantly outperforms the benchmark schemes in all
metrics across the board. The improvement in BLEU-n is greater for greater n; TPGN particularly
improves generation of longer subsequences. The results attest to the effectiveness of the TPGN
architecture.

3.2.2 Interpretation of the learned roles

We now consider the extent to which the unbinding vectors that the TPGN system has learned to
produce contain syntactic information. We assess this by determining how well classifiers can identify
POS tags for words given the unbinding vectors used to generate those words; the gold standard for
these tags are taken to be the output of the Stanford tagger [13]. This test is done on a variant of the
architecture in which the visual-image input is replaced by a gold-standard caption, fed one word at a
time into an LSTM to generate a vector which, like the feature vector input from the CNN, is used
to initialize S and hence (ideally) re-generate the caption. We run this system with 5,000 sentences
from the COCO test set as input, and obtain an unbinding vector ut of each word xt in the sentence
produced by the TPGN system.

We designed a classifier for predicting the POS of each word xt. The classifier is a kernel support
vector machine with stochastic gradient descent, using a radial basis function kernel. The input of the
classifier is Nw unbinding vectors corresponding to a window of Nw words centered on the word to
be classified. We used the unbinding vectors and the Stanford tagger’s POS tags of 4,000 sentences
for training, and the unbinding vectors of 1,000 sentences for testing. Thus in a sense we measure
how close our system is to having the implicit syntactic knowledge that is possessed by the Stanford
tagger.

Table 4: Predicting POS from learned unbinding vectors

Window size Nw 1 3 5 7 9 11 13

Precision 0.757 0.944 0.937 0.946 0.934 0.929 0.919
Recall 0.763 0.929 0.936 0.942 0.928 0.927 0.922
F-measure 0.760 0.937 0.936 0.944 0.931 0.928 0.921
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Table 4 shows the results for classifying the POS of the words in the captions. It can be seen
that, using the unbinding vector of a single word, we can classify the POS of the word with an
accuracy of 76.3% (using the Stanford tagger as a reference). This means that a single unbinding
vector contains important, but partial, grammatical information about the corresponding word. If
the unbinding vectors of neighboring words are used, the accuracy of POS classification can be
significantly increased to over 92%. The highest accuracy is achieved when the window size is 7; the
F-score is 94.4%. This shows that the representations that TPGN learns — without any supervison by
grammatical information — contain much of the rich syntactic information found in a supervised
model such as the Stanford tagger.

For much further discussion of TPGN, see [12].

4 Related work

Architecture. In recent years, a number of DNNs have achieved notable success by reintroducing
elements of symbolic computation as peripheral modules. This includes, e.g.: (i) the memory bank, a
discrete set of addressed storage registers each holding a neural activation vector [10, 27, 30]; and
(ii) the sequential program, a discrete sequence of steps, each selected from a discrete set of simple,
approximately-discrete primitive operations [7, 14]. The discreteness in these peripheral modules
is softened by continuous parameters with which they interface with the central controlling DNN;
these ‘attention’ parameters modulate (i) the writing and reading operations with which information
enters and exits a memory bank [4, 31]; and (ii) the extent to which inputs are passed to and outputs
retrieved from the set of operations constituting a program [8]. The continuity of these parameters is
of course crucial to enabling the overall system to be learnable by gradient-based optimization.

TPRNs explicitly, and TPGNs implicitly, constitute a different approach to reintroducing approxi-
mately symbolic representations and rule-based processing into neural network computation over
continuous distributed representations. In computation with TPRs, the symbols and rules are in-
ternal to the DNN; there is no separation between a central network controller and peripheral
quasi-discrete modules. Items in memories are distributed representations that are combined by
addition/superposition rather than by being slotted into external discrete locations. Computation over
TPRs is massively parallel [24].

Interpretation. Most methods of interpreting the internal representations of DNNs do so through
the input and output representations of DNNs which are by necessity interpretable: these are where
the DNN must interface with our description of its problem domain. An internal neuron may be
interpreted by looking at the (interpretable) input patterns that activate it, or the (interpretable) output
patterns that it activates (e.g., [32]).

The method pursued in this paper, by contrast, interprets internal DNN states not via I → O
behavior but via an abstract theory of the system’s problem domain. In the case of a language
processing problem, such theories are provided by theoretical linguistics and traditional, symbolic
computational linguistics. The elements we have interpreted are TPR roles, and TPR fillers, which
are distributed activation vectors incorporated into network representations via the summation of their
tensor products; we have designed an architecture in which individual neurons localize the presence
of such roles and fillers (aR(t) and aS

(t)). Our interpretation rests on the interrelations between
activations of the roles and fillers selected to encode words-in-context with the lexical-semantic and
grammatical properties attributed to those words-in-context by linguistic theories.

5 Conclusion

We introduced two architectures inspired by Tensor Product Representations (TPRs) — TPRN
and TPGN — and evaluated these models on the important NLP tasks of machine reading
comprehension and image-to-language generation. Our results show that compared to the widely
adopted LSTM-based architecture, the proposed models demonstrate significant grammatical
interpretability, with on-par or better performance on these challenging tasks.
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