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Abstract

Deep reinforcement learning (deep RL) agents have achieved remarkable success
in a broad range of game-playing and continuous control tasks. While these agents
are effective at maximizing rewards, it is often unclear what strategies they use to
do so. In this paper, we take a step toward explaining deep RL agents through a case
study in three Atari 2600 environments. In particular, we focus on understanding
agents in terms of their visual attentional patterns during decision making. To this
end, we introduce a method for generating rich saliency maps and use it to explain
1) what strong agents attend to 2) whether agents are making decisions for the right
or wrong reasons, and 3) how agents evolve during the learning phase. We also test
our method on non-expert human subjects and find that it improves their ability
to reason about these agents. Our techniques are general and, though we focus on
Atari, our long-term objective is to produce tools that explain any deep RL policy.

1 Introduction

Deep learning algorithms have achieved state-of-the-art results in image classification [8, 13], machine
translation [14], image captioning [9], drug discovery [3], and deep reinforcement learning [15, 21].
Yet while these models can achieve impressive performance on such tasks, they are often perceived as
black boxes. In real-world applications, such as self-driving cars and medical diagnosis, explaining
the decision processes of these models is a key concern.

While an abundance of literature has addressed techniques for explaining deep image classifiers
[6, 18, 22, 27] and deep sequential models [10, 17], very little work has been done to explain deep
RL agents. These agents are able to learn strong policies on a wide range of challenging tasks, often
using only sparse rewards and noisy, high-dimensional inputs. Simply observing the behavior of
these agents is one way to understand their policies. However, explaining their decision-making
process in more detail requires better tools.

Visualizing deep RL policies for explanation purposes is difficult. Past methods include t-SNE
embeddings [15, 25], Jacobian saliency maps [24, 25], and reward curves [15]. These tools generally
sacrifice interpretability for explanatory power or vice versa. Our work is motivated by trying to
strike a favorable balance between the two extremes.

In this paper, we introduce a perturbation-based technique for generating high-quality saliency videos
of deep reinforcement learning agents. The introduction of this technique was motivated by observing
the generally poor quality of Jacobian saliency, which has been primarily used to visualize deep RL
agents in prior work (see Figure 1). For the sake of thoroughness, we limit our experiments to three
Atari 2600 environments: Pong, SpaceInvaders, and Breakout. Our long-term goal is to visualize and
understand the policies of any deep reinforcement learning agent that uses visual inputs. To this end,
we use an approach that can be adapted to environments beyond Atari.
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Figure 1: Comparison of Jacobian saliency to our
perturbation-based approach. We are visualizing
an actor-critic model [16]. Red indicates saliency
for the critic; blue is saliency for the actor.

After introducing our technique for generating
saliency maps, we take an investigative approach
to understanding Atari policies. First, we use
our visualizations to identify the key strategies
of three agents that exceed human baselines in
their environments. Second, we visualize agents
at various points in training to see how their poli-
cies evolve. Next, we use these strong agents to
add "hint pixels" into the environment and train
"overfit" agents. These overfit agents "cheat" by
learning policies that depend on the hint pixels
rather than the original environment, but still ob-
tain high rewards. In other words, they make the
right decisions, but for the wrong reasons. We
use survey results to show that our method helps
non-experts differentiate between strong agents
and overfit agents, even when these agents earn
similar rewards. This provides evidence that our visualizations 1) correctly reflect the attention of the
agents, and 2) can help non-experts understand and trust deep RL agents.

Most of this paper is focused on understanding how an agent’s current observation affects its current
decision. However, since we use recurrent policy networks, we acknowledge that memory is also
important to their behavior. A simple example is an agent which has learned to reason about the
velocity of a ball; it needs information about previous frames in addition to information from the
current frame to do this. In response to these concerns, we present preliminary experiments on the
role of memory.

2 Related Work

Explaining traditional RL agents. Prior work has considered generating natural language and logic-
based explanations for decisions made by policies in Markov Decision Process (MDP) [4, 5, 11].
These methods all assume access to an exact MDP model (e.g. represented as a dynamic Bayesian
network) and that policies are mappings from interpretable, high-level state features to actions.
Neither assumption is valid in our vision-based RL domains.

More recently there has been work on explaining RL agents that does not require an MDP model
[7]. Rather, policy execution traces are analyzed to extract interpretable policy behavior patterns.
This approach, however, relies heavily on the presence of hand-crafted features of states that are
semantically meaningful to humans. This is impractical in our vision-based applications, where
deep RL agents learn directly from pixels. Explaining agents trained in these environments requires
developing a new set of tools.

Explaining deep RL agents. Recent work by Zahavy et al. (2017) [25] has developed tools for
explaining deep RL policies in visual domains. Similar to our work, the authors use the Atari
2600 environment as an interpretable testbed. Their key contribution is a method of approximating
the observed behavior of deep RL policies via "Semi-Aggregated" Markov Decision Processes
(SAMDPs), which are used to gain insights about the deep RL policies. While this process of
distilling a simple, explainable policy from a complex, uninterpretable one produces valuable insights,
it is unclear how well this truly reflects the internal decision-making of the RL agent. From a user
perspective, an issue with the explanations themselves is that they emphasize t-SNE clusters and
state-action statistics which are uninformative to those without a background in machine learning.

Ideally, explanations should be obtained directly from the underlying policy and they should be
interpretable to an untrained eye. Our contribution compliments the results of Zahavy et al. by
addressing a different set of questions with a different set of tools. Whereas they primarily take
a black box approach (using SAMDPs to analyze high-level policy behavior), we aim to obtain
visualizations that give insight into how inputs influence individual decisions. In order to do so, we
turned to previous literature on explaining Deep Neural Networks (DNNs). A wealth of previous
works seek to explain DNNs. The objective is often a human-interpretable saliency map. While
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techniques vary from work to work, most fall into two main categories: gradient methods and
perturbative methods.

Gradient-based saliency methods. Gradient methods produce saliency maps for DNN models by
using variants of backpropagation to compute gradients on the input image with respect to an output.
The simplest approach is to take the Jacobian with respect to the category of interest [22]. Unfortu-
nately, the Jacobian does not always produce the most (qualitatively) human-interpretable saliency
maps. Thus several variants have emerged, aimed at modifying gradients to obtain more meaningful
saliency maps. These variants include Guided Backpropagation [23], Excitation Backpropagation
[27], and DeepLIFT [20].

Gradient methods are efficient to compute and have clear semantics (∂f(x)∂xi
is a mathematical definition

of saliency), but their saliency maps are often difficult to interpret. This is partly because, when
answering the question "What perturbation to the input maximizes a particular output?", gradient
methods choose perturbations which lack physical interpretability. In other words, changing an input
in the direction of the gradient will often move it off the manifold of realistic input images.

Perturbative-based saliency methods. The idea behind perturbative methods is to measure how
a model’s output changes when some of the input information is removed. For a simple example
(borrowed from [6]), consider a classifier which predicts +1 if the image contains a robin and -1
otherwise. Removing information from the part of the image which contains the robin should change
the model’s output, whereas doing so for other areas should not. However, choosing a perturbation
which removes information without introducing any new information can be difficult.

The simplest perturbation is to replace part of an input image with a gray square [26] or gray region
[18]. One problem with this approach is that replacing pixels with a constant color can introduce
unwanted information. Adding a gray square might increase a classifier’s confidence that the image
contains a gray object, such as an elephant. More recent approaches by [2] and [6] use masked
interpolations between the original image I and some other image A, where A is chosen to introduce
as little new information as possible.

3 Visualizing Saliency for Atari Agents

In this work, we focus on agents trained via the Asynchronous Advantage Actor-Critic (A3C)
algorithm, which is known for its ease of use and strong performance in Atari environments. A3C
trains agents that have both a policy (actor) distribution π and a value (critic) estimate V π. In
particular, letting I1:t denote the sequence of image frames from time 1 to time t, π(I1:t) returns a
distribution over actions to take at time t and V π(I1:t) estimates the value of the (hidden) world state
at time t. We use a deep neural architecture for both π and V π as detailed in Section 4.

We are interested in understanding these deep RL agents in terms of the information they use to make
decisions and the relative importance of visual features. To do this, we found it useful to construct
and visualize saliency maps for both π and V π at each time step. In particular, the saliency map
for π(I1:t) is intended to identify the most important information in frame It used by the policy to
select an action at time t. Similarly, the saliency map for V π(I1:t) is intended to identify the most
important information in frame It for assigning a value to the world state at time t.

In our initial work, we found that gradient-based saliency methods produced results that were difficult
to interpret when visualized for entire games. This led us to develop a perturbative method, which we
found to produce very rich and insightful saliency videos1.

Perturbation-Based Saliency. Given an image It at time t, we let Φ(It, i, j) denote our perturbation
of It centered at image coordinate (i, j). Φ(It, i, j) is given by Equation 1 and represents a spatially-
weighted blur centered around (i, j). In this definition A(It, σA) is a Gaussian blur of the original
input (with variance σA = 3) and M(i, j) ∈ (0, 1)m×n is an image mask of dimensions m × n
corresponding to a two-dimensional Gaussian with center at µ = (i, j) and σ2 = 25.

Φ(It, i, j) = It � (1−M(i, j)) +A(It, σA)�M(i, j) (1)

1We found that making videos from these saliency maps produced very rich visualizations. Videos and code
(PyTorch) available at github.com/greydanus/visualize_atari
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This perturbation can be interpreted as adding spatial uncertainty to a region around (i, j). For
example, if location (i, j) coincides with the location of the ball in a frame from the Pong environment,
our perturbation will diffuse the ball’s pixel values, making the policy less certain about the ball’s
absolute position.

We are interested in answering the question, "How much does removing information from the region
around location (i, j) change the policy distribution or value estimate?" Focusing first on the policy
π, let πu(I1:t) denote the vector of unnormalized values that are computed as inputs to the final
softmax layer2 of π. With these quantities, we define our saliency metric for image location (i, j) at
time t as follows:

Sπ(t, i, j) =
1

2
‖πu(I1:t)− πu(I ′1:t)‖2 where I ′k =

{
Φ(Ik, i, j) if k = t

Ik otherwise
(2)

Qualitatively, the difference πu(I1:t)−πu(I ′1:t) can be thought of as a finite differences approximation
of the directional gradient∇v̂πu(I1:t) where the directional unit vector v̂ denotes the gradient in the
direction of I ′1:t. Our saliency metric is proportional to the squared magnitude of this quantity. It is
this intution that suggests how our perturbation method may improve on gradient-based methods.
In particular, the unconstrained gradient need not point in a directly that is visually meaningful to a
human. By constraining the direction of change to more meaningful and visually coherent choices,
we obtained saliency maps that tended to be much more interpretable.

Saliency in practice. With these definitions, we can construct a saliency map for policy π at time t
by computing S(t, i, j) for every pixel in It. In practice, we found that computing a saliency score for
i mod k and j mod k (we used k = 5) produced acceptable saliency maps at lower computational
cost. For visualization purposes, we upsampled these maps to the full resolution of the Atari input
frames and added them to one of the three (RGB) color channels.

An identical approach is used to construct saliency maps for the value estimate V π. The only
difference is that saliency is defined in terms of the squared difference between the value estimate of
the original sequence and the perturbed sequence. That is,

SV (t, i, j) =
1

2
‖V π(I1:t)− V π(I ′1:t)‖2. (3)

We chose to display policy saliencies with blue pixels and value saliencies with red.

4 Experiments

Below we first describe implementation details for our method. Next we present a series of experi-
mental results that use our saliency technique for multiple explanatory purposes.

4.1 Implementation Details

All Atari agents in this paper have the same recurrent architecture. The input at each time step is a
preprocessed version of the current frame. The input is processed by 4 convolutional layers (each
with 32 filters, kernel sizes of 3, strides of 2, and paddings of 1), followed by an LSTM layer with
256 hidden units, and a fully-connected layer with n+ 1 units, where n is the dimension of the Atari
action space. We applied a softmax activation to the first n neurons of the fully-connected layer to
obtain π(I1:t) and used the last neuron to predict the expected reward, V π(I1:t) for images I1:t.

We trained agents on Pong, Breakout, and SpaceInvaders using the OpenAI Gym API [1]. We chose
these environments because each poses a different set of challenges and deep RL algorithms have
historically exceeded human-level performance in them [15]. Preprocessing consisted of gray-scaling,
down-sampling by a factor of 2, cropping the game space to an 80× 80 square and normalizing the
values to (0, 1). We used the A3C RL algorithm with a learning rate of α = 10−4, a discount factor
of γ = 0.99, and computed loss on the policy using Generalized Advantage Estimation with λ = 1.0
[19]. Each policy was trained asynchronously for a total of 40 million frames with 20 CPU processes
and a shared version of the Adam optimizer 3 [12].

2We found that working with πu rather than the softmax output π resulted in sharper saliency maps.
3Code (PyTorch) available at github.com/greydanus/visualize_atari
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4.2 Understanding Strong Policies

Our first objective was to use saliency videos to explain strategies learned by strong Atari agents.
These agents all exceeded human baselines in their environments by a significant margin. First, we
generated saliency videos for three episodes (2000 frames each). Next, we conducted a qualitative
investigation of these videos and noted strategies or features that stood out.

(a) Pong: kill shot (b) SpaceInvaders: aiming (c) Breakout: tunneling

Figure 2: Visualizing strong Atari 2600 policies. We use an actor-critic network; the actor’s saliency
map is blue and the critic’s saliency map is red. White arrows denote motion of the ball.

The strong Pong policy. Our deep RL Pong agent learned to beat the hard-coded AI over 95% of
the time, often by using a "kill shot" which the hard-coded AI was unable to return. Our initial
understanding of the kill shot was that the RL agent had learned to first "lure" the hard-coded AI into
the lower region of the frame and then track and aim the ball towards the top of the frame, where it
was most difficult for the hard-coded AI to return.

Saliency visualizations told a different story. It appears that the deep RL agent is exploiting the
deterministic nature of the Pong environment; it has learned that, upon executing a precise series of
actions, it can obtain a reward with very high certainty. In the top frame of Figure 2a, the agent is
positioning its own paddle in order to return the ball at a specific angle. Note that the agent attends to
very little besides its own paddle, probably because the movements of the ball and opponent are fully
deterministic. Similarly, once the agent has executed the kill shot (lower frame), saliency centers
entirely around the ball because there is nothing that either paddle can do to alter the outcome.

The strong Space Invaders policy. When we observed our SpaceInvaders agent without saliency
maps, we noted that it had learned a strategy that resembled aiming. However, we were not certain
of whether it was "spraying" shots towards dense clusters of enemies, or whether it was picking out
individual targets.

Applying saliency videos to this agent revealed that it had learned a sophisticated aiming strategy,
during which first the actor and then the critic would "track" a target. Aiming begins when the actor
highlights a particular alien in blue (circled enemy in Figure 2b). This is somewhat difficult to see
because the critic network is also attending to a recently-vanquished opponent below. Aiming ends
with the agent shooting at the new target. At this point the critic highlights the target in anticipation
of an upcoming reward (lower frame). Notice that both the actor and the critic tend to monitor the
area above the ship at the bottom of the screen. This may be useful for determining whether the ship
is protected from enemy fire and/or has a clear shot at enemies.

The strong Breakout policy. Previous works have noted that strong Breakout agents often develop
tunneling strategies [15, 25]. During tunneling, an agent repeatedly directs the ball at a region of the
brick wall in order to tunnel through it. The strategy is desirable because it allows the agent to obtain
dense rewards by bouncing the ball between the ceiling and the top of the brick wall.
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Our impression was that possible tunneling locations would become (and remain) salient from early
in the game. Instead, we found that the agent enters and exits a "tunneling mode" over the course
of a single frame. Once the tunneling location became salient, it remained so until the tunnel was
finished. In the top frame of Figure 2c, the agent has not yet initiated a tunneling strategy and the
value network is relatively inactive. Just 20 frames later, the value network starts attending to the far
left region of the brick wall, and continues to do so for the next 70 frames (lower frame).

4.3 Policies during Learning

During learning, deep RL agents are known to transition through broad spectrum of strategies. Some
of these strategies are eventually discarded in favor of better ones. While training AlphaGo Zero [21],
for example, researchers observed first an increase in the frequency of moves made by professional
players and then a decrease, as the model discovered strategies unknown to humans. Does an
analogous process occur in Atari agents? We explored this question by saving several models during
training and visualizing them with our saliency method.

(a) Breakout: learning what features are important.

(b) Breakout: learning a tunneling strategy.

(c) Pong: learning a kill shot.

(d) SpaceInvaders: learning what features are important and how to aim.

Figure 3: Visualizing learning. Each row corresponds to a selected frame from a game played by a
fully-trained agent. Leftmost agents are untrained, rightmost agents are fully-trained. Each column is
separated by ten million frames of training. White arrows denote motion of the ball.

Learning policies. Figure 3 shows how attention changes during the learning process. We see that
Atari agents exhibit a significant change in their attention as training progresses. In general, the
"most salient" regions/objects to the actor and critic networks vary dramatically during training which
suggests that they make decisions for very different reasons. For example, in Breakout, Figure 3b
shows how the critic appears to learn about the value of tunneling the ball through the bricks as
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depicted by the clear focus on the tunnel in the upper left part of the screen. As another example,
in Space Invaders, we noticed that early in training the agent began by "spraying bullets," during
which the actor-critic saliencies focused on the spaceship at the bottom of the frame and occasionally
a cluster of opponents above. As training progressed, though, the agent shifted to an aiming-based
policy.

4.4 Detecting Overfit Policies

Here our objective was to understand the difference between a strong policy and a overfit policy. By
"overfit", we refer to a policy that obtains high rewards, but "for the wrong reasons". A secondary
objective of this experiment is to provide a more controlled setting for validating whether our saliency
maps truly reflect the attention of our agents. We constructed a toy example where we encouraged
overfitting by adding "hint pixels" to the raw Atari frames. For "hints" we chose the most probable
action selected by a strong ("expert") agent and coded this information as a one-hot distribution of
pixel intensities at the top of each frame (see Figure 4 for examples).

With these modifications, we trained overfit agents to predict the expert’s policy in a supervised
manner. We trained "control" agents in the same manner, assigning random values to their hint pixels.
We expected that the overfit agents would learn to focus on the hint pixels, whereas the control agents
would need to attend to relevant features of the gamespace. We halted training after 3× 106 frames,
at which point all agents obtained mean episode rewards at or above human baselines. We were
unable to distinguish the overfit agents from the control agents by observing their behavior.

(a) Pong (b) SpaceInvaders (c) Breakout

Figure 4: Visualizing overfit Atari policies. The top row shows control agents whereas the bottom
row shows overfit agents. Grey boxes (near the top of each frame) denote the hint pixels. White
arrows denote motion of the ball.

In all three games, our saliency technique made clear the difference between overfit and control
agents. This finding helps validate our saliency method, in that it can pinpoint regions of the input
that we already know are most important to the agent. Second, it serves as a good, although contrived,
example of how saliency maps can identify agents that obtain high rewards for the wrong reasons.

4.5 Visualizations for Non-experts

Convincing human users to trust deep RL is a notable hurdle in most real-world applications. Non-
experts should be able to understand what a strong agent looks like, what an overfit agent looks like,
and reason about why these agents behave the way they do. We surveyed 31 students at Anonymous
Institution to measure how our visualization helps non-experts with these tasks.

Our survey consisted of two parts. First, participants watched videos of two agents (one control and
one overfit) playing Breakout without saliency maps. The policies appear nearly identical in these
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clips. Next, participants watched the same videos with saliency maps. After each pair of videos, they
were instructed to answer several multiple-choice questions.

Table 1: "Which agent has a more robust strategy?"
Can’t tell Agent 1 (overfit) Agent 2 (control)

Video without saliency 16.1 48.4 35.5
Video with saliency 16.1 25.8 58.1

Results in Table 1 indicate that saliency maps helped participants judge whether or not the agent was
using a robust strategy. In free response, participants generally indicated that they had switched their
choice of "most robust agent" to Agent 2 (control agent) after seeing that Agent 1 (the overfit agent)
attended primarily to "the green dots."

Another question we asked was "What piece of visual information do you think Agent X primarily
uses to make its decisions?". Without the saliency videos, respondents mainly identified the ball
(Agent 1: 67.7%, Agent 2: 41.9%). With saliencies, most respondents said Agent 1 was attending to
the hint pixels (67.7%) and Agent 2 was attending to the ball (32.3%).

4.6 Importance of Memory

Memory is a key part of recurrent policies that we have not yet addressed. To motivate future
directions of research, we modified our perturbation method to measure the saliency of memory over
time. Since memory vectors are not spatially correlated, we chose a different perturbation: decreasing
the magnitudes of all entries by 1%. This perturbation reduces the relative magnitude of the LSTM
memory vector compared to the CNN vector that encodes the input frame; if memory is not important
to a decision, it should not have a large impact on the action probabilities.

Figure 5: Our saliency metric, applied to the memory vector of the Breakout agent, indicates that
memory is most salient immediately before the ball contacts the paddle.

Our preliminary results suggest that memory is most salient to Pong and Breakout agents immediately
before the ball contacts the paddle (see Figure 5). The role of memory in SpaceInvaders was less
clear. These results are interesting, but we recognize that the policy might be most sensitive to any
perturbations immediately before the paddle contacts the ball. If this is the case, understanding the
contributions of memory to these agents’ policies will require a new set of visualization tools.

5 Conclusions

In this paper, we addressed the growing need for human-interpretable explanations of deep RL agents
by introducing a new saliency method and using it to visualize and understand Atari agents. We
found that our saliency method can yield effective visualizations for a variety of Atari agents. We
also found that these visualizations can help non-experts understand what deep RL agents are doing.
Finally, we obtained preliminary results for the role of memory in these policies.

Understanding deep RL agents is difficult because they are black boxes that can learn nuanced and
unexpected strategies. To produce explanations that satisfy human users, researchers will need to
use not one, but many techniques for extracting the "how" and "why" from these agents. This work
compliments previous efforts, taking the field a step closer to producing truly satisfying explanations.
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