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Abstract

Deep Taylor Decomposition is a method used to explain neural network decisions.
When applying this method to non-dominant classifications, the resulting explana-
tion does not reflect important features for the chosen classification. We propose
that this is caused by the dense layers and propose a method to alleviate the effect
by applying regularization. We assess the result by measuring the quality of the
resulting explanations objectively and subjectively.

1 Introduction

In recent years, Neural Networks (NNs) have achieved great success in many applications, particularly
in the visual domain [1, 2, 3]. However, they essentially function as a black box for the decision
they made. This is undesirable for a number of applications. Especially for applications like medical
diagnosis and other heavily influential decisions it is essential that we can verify and argue for a
decision and knowing the reasoning is as important as the decision itself [4, 5, 6].

Deep Taylor Decomposition is a recently proposed approach to retrieve an explanation for a classi-
fication [7]. When applying this method to classes other than the class with maximum output, the
explanation does not reflect the features related to the non-dominant classification. We call this effect
diffusion, as the explanation for non-dominant classes is diffused by the explanation for the dominant
class. For this reason, Deep Taylor Decomposition usually fails the purpose of explaining multiple
classifications. However, this information is important for some applications. We want to know
what evidence speaks for a less dominant class when we do risk analysis, when we want to merge
information from different sources or to analyze an NN for finding weaknesses.

2 Related Work

2.1 Other approaches to explainability

Recently a number of papers have dealt with explaining NNs [8, 9, 10, 7]. They can be categorized
into following one of two basic approaches. Either the goal is to find general properties of the NN or
obtain an explanation for a specific decision. In this work we concentrate on the latter.

Simonyan et al. [9] computes a saliency map for an input image in regards to a specific class score.
By finding pixels of the image where the class score has a high gradient, they identify important
areas of the image. The method works for all classes recognized by the network equally well without
considering saliency for other classes. However, as argued in multiple works, this method only
visualizes what would change the class score but not what caused it [11, 12, 13, 7]. Bach et al. [12]
proposed a method for explaining an output score in terms of pixels of the input. In particular, it
introduces a Taylor decomposition that finds a near root point, where the output score would be zero,
and performs expansion approximation from this point along with iterative relevance propagation to
retrieve the relevance distribution on the input.
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2.2 Deep Taylor Decomposition

In this section we describe Deep Taylor Decomposition (DTD), the method for explaining NN
decisions introduced in Montavon et al. [7]. A more extensive explanation can be found in Montavon
et al. [14].

DTD assigns relevance for the classification to each discrete part of the input [7]. Subsequently, we
will only talk about images where pixels are the discrete input. We want to find a mapping Rp(x),
that assigns relevance for the NN classification to each pixel p in the input image x = {xp} with
xp denoting a specific pixel. Positive values Rp(x) > 0 indicate that the pixel xp is relevant for the
classification. The result is a heatmap highlighting important parts of the image with dimensions
equal to the original image as shown in Figure 1.

DTD propagates relevance layer-wise backward, similar to backpropagation during training. In the
output layer xk = {xk} the relevance Rk for each neuron is the output of that neuron xk.

For the preceding layers, the relevance Rj of each neuron xj in layer xj can be written as a Taylor
decomposition of the neurons in the preceding layer xi evaluated at a near root point x̃i

(j) with
Rj = 0. The relevance of each neuron xi can then be written as the sum of their contributions to Rj:

Ri =
∑

j

∂Rj

∂xi
|{x̃(j)

i }
· (xi − x̃(j)i ) (1)

We consider a simple layer with non-linearity {xj}:
xj = max(0, wijxi + bj) (2)

where {xi} is the input and {wij , bj} are weight and bias parameters of the layer. An additional
constraint bj ≤ 0 is placed on the bias parameter bj of each neuron xj to guarantee the existence of a
root point at the origin.

Since each root point should lie in the admissible input space, injecting a legal, near root point results
in different propagation rules, depending on the input space. For layers following the input layer, the
input space is constrained to R+, since ReLU is used as the activation function in the previous layer.
Inserting the nearest point in this space into Equation (1) leads to the z+-rule as defined in [7] as:

Ri =
∑

j

xiw
+
ij∑

i xiw
+
ij

Rj (3)

with w+
ij = max(wij , 0). wij is the weight connecting neuron xi to neuron xj in the following layer.

The zB-rule as defined in [7] is used to propagate relevance from the first layer back to the input
image, where the admissible input space lies between a minimum value li ≤ 0 and a maximum value
hi ≥ 0:

Ri =
∑

j

xiwij − liw+
ij − hiw

−
ij∑

i′ xiwi′j − liw+
i′j − hiw

−
i′j

Rj (4)

with w+
ij = max(0, wij) and equivalently w−ij = min(0, wij). The heatmap is summed up over all

color channels for each pixel, since we are interested in the contribution of each pixel, not each color
channel.

3 Diffusion of explanations

We can apply DTD to a less-dominant class by setting the output for all other classes to 0 for the
relevance propagation as shown in Figure 2b. Intuitively, we expect to have features relevant for
this class highlighted in the resulting heatmap, as we propagate only the output relevance for this
class back. This does not happen. Instead, if DTD is applied to another class than the correct one,
the resulting heatmap is very similar to the maximum output heatmap and does not reflect features
speaking for the weaker class. In Figure 1 we show this for an example from CIFAR10.

We call this effect diffusion, since relevant features of the class, that we are interested in, are being
diluted or diffused by highly salient features in the image. Subsequently, we will refer to an image
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(a) Input (b) HM car (c) HM plane

Figure 1: Diffusion of explanation heatmaps (HM) for a sample image from CIFAR10. Heatmaps
look identical for all classes.
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(a) Relevance propagation for dominant class (blue
circle)
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Figure 2: Diffusion of features when applying DTD to different classes. Explanation for non-dominant
class (square) gets diffused with dominant explanation.

or network that has heatmaps with a higher difference for different classifications as one with low
diffusion.

A potential cause for this is, that each neuron xi is activated to reflect the dominant features in the
input image since only the output was artificially changed. The relevance propagation in DTD is
dependent on neuron activation in each layer. Highly activated neurons overshadow the neurons that
activate for features not as dominant in the image. As a result, the relevance heatmap does not change
as expected when an artificial output distribution is used.

We demonstrate this for a toy example in Figure 2. Weights are either 0.1 (thinner connection) or 1.0
(thicker connection). The input layer sums up the color intensities for the respective colors in the
image, since in our toy example circles are almost always blue and squares are almost always orange.
The output is a two-dimensional vector classifying the image as either square or circle. We apply the
z+ rule for backpropagation, as every input is bigger than zero.

Even though in the lower image the square should have more relevance, the highly activated neurons
dominate the heatmap and the majority of relevance is attributed to the circle. We suspect that the
same effect on a larger scale causes heatmaps for artificial outputs to look identical to the heatmap
for the true output score when applying DTD.

4 Mitigating diffusion by block-wise layer regularization

If diffusion is caused by different neurons overshadowing each other, we can mitigate it by separating
the flow of information so that neuron activations will not influence each other. Our objective is to
reduce diffusion by separating the flow of information for different classes. At the same time, we
want to minimize the additional training expense by minimizing the separation of layers.
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NNs for image recognition are normally made up of a number of convolutional blocks, followed
by multiple dense layers. Features recognized in a convolutional layer are likely to be universal
for different classes, especially in the lower layers. In contrast, the combination of features in the
dense layers that result in a class score is likely unique to a specific class. We therefore restrict the
separation to the dense layers of an NN.

An intuitive approach would be to divide the dense layers and train a dedicated version of them for
each class. This will completely separate the flow of information but highly increase the training cost,
since we have to train one version of the dense layers for each class.
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Figure 3: DTD for a layer with L1 regularization. Weights outside of the diagonal blocks are
regularized to encourage sparsity.

We therefore propose softly separating the flow of information for different classifications by sparsi-
fying the dense layers with L1 regularization. L1 regularization encourages sparsity and functions as
a feature mechanism selector [15, p.236 f.].

In each dense layer, we leave a number of blocks equal to the number of classes along the diagonal
unregularized. This is visualized in Figure 3. Weights, that lie outside of those blocks, are sparsified
with an added L1 penalty in the loss function. Since only connections with positive weights contribute
to the relevance as explained in Section 2.2, we only regularize positive weights.

As a result, only the weights connecting a specific class block in one layer to the same class block in
the next layer are unregularized. We separate the flow of information for each class without increasing
the number of layers or the number of neurons in each layer. To enforce L1 regularization we add the
L1 penalty term to the cost function. Different from conventional L1 regularization, which penalizes
all weights, only positive weights outside of the block matrices are regularized. This leads to the
following equations:

minimize
W,b

− 1

N

N∑

n=1

ŷn
T · log(yn) + λ · S(W ) (5)

S(W ) =
∑

l

∑

i

∑

i

max(0, wl
ij) · (1i:C!=j:C) (6)

with wl
ij being the weight connecting the i-th neuron in layer l − 1 layer to the j-th neuron in layer l.

λ is the regularizer rate. C is the number of classes. yn is the NN output for a particular input and ŷn
is the corresponding ground truth. The weight is regularized if it is positive and connects two neurons
from different class blocks, i.e. when applying integer division with the number of classes to the
neuron indices results in different values.
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5 Experiments

We apply our method to NNs trained with different datasets to assess the viability and report results
for regularizing with varying values of λ.

5.1 Setup

We show results for using the L1 regularization on CIFAR10 [16], MNIST [17] and FashionMNIST
[18].

Table 1: Used network architectures
Dataset L1 L2 L3 L4 L5 L6 L7 Output
CIFAR10 Cov(32,3,3) Cov(32,3,3) MaxP Cov(64,3,3) Cov(64,3,3) MaxP D(512) D(10)
FASHION Cov(32,3,3) AvgP D(256) D(10)
MNIST Cov(32,3,3) AvgP Cov(64,2,2) AvgP D(512) D(10)

For clarity, we show results for one network architecture for each dataset. In Table 1 the used network
architectures are shown. Dropout was applied during training to prevent overfitting. For NNs trained
for CIFAR10 we additionally used horizontal flipping and shifting for data augmentation during
training. All networks were pre-trained without regularization until the loss no longer improved for
three concurrent epochs. This pre-trained network is used as a baseline. This NN is fine-tuned by
training with L1 regularization as described in Section 4 until loss has no longer improved for three
epochs. We fine-tuned networks with λ ∈ {0.1, 0.5, 1.0, 5.0}.
To assess the viability of the proposed method we need a way to measure diffusion and its reduction.
Ideally, we would have an objective metric for the meaningfulness of an explanation in regards to a
particular class. Unfortunately, it is not possible to obtain a ground truth for this. Therefore, we use a
combination of two measures. To objectively measure the diffusion for one specific NN, we take the
Frobenius norm of the difference between heatmaps for the two classes with the highest output for
one image. We average this value over a number of images from the test set, resulting in:

dk =
1

N

∑

n∈N
‖Rn,c1 −Rn,c2‖F (7)

with c{1,2} being the class with the highest or second-highest output respectively. Rn,c represents
the relevance distribution at the input level for image n and class c. We average the diffusion over
N images. Diffusion between two versions of the same network architecture can be compared by
comparing the average diffusion values. In this way we can assess the effectiveness of regularization
in regards to reducing diffusion.

This objectively measures the difference between explanations for different classes, which we want to
increase. We visually assess the heatmaps for test images to additionally judge whether the difference
is meaningful.

5.2 Results

Table 2: Diffusion metric when applying soft separation with varying strength of separation with λ

λ CIFAR10 FASHION MNIST
Baseline 0.13 0.42 0.28

0.1 0.12 0.76 1.06
0.5 0.59 1.80 0.98
1.0 0.58 1.85 0.97
5.0 0.56 1.72 1.02

In Table 2 we show the difference metric defined in Section 5.1 averaged over randomly sampled
images from the test set for the baseline network and networks regularized with varying λ. We see,
that applying L1 regularization almost always results in decreased diffusion and more differences
between heatmaps. The λ-value at which the lowest diffusion is reached varies. Since the value

5



correlates with the final accuracy and final loss of the network, a likely explanation is that the
same regularization value does not influence the training as much if the other component of the
loss-function is also high.

Input HM Car HM Plane

(a) Baseline NN

Input HM Car HM Plane

(b) L1 regularized NN

Figure 4: Baseline NN (upper row) and L1 regularized NN (lower row) heatmap comparison for
CIFAR10 image. The L1 regularized network puts more relevance on the wing for plane. In the HM
for car, the street background is more relevant.

In Figures 4 and 5 we show heatmaps for test images created by a baseline NN and the λ = 1.0
regularized version. It is visible that the difference in the explanation from the L1 regularized NN
aligns with our intuitive explanation, i.e. the wings of a plane are more relevant for class plane than
class car. Diffusion is still existent, though reduced. As shown in Table 3, the accuracy does not

Table 3: Accuracy when applying soft separation with varying strength of separation with λ compared
to the baseline

λ CIFAR10 FASHION MNIST
Baseline 0.80 0.91 0.99

0.1 0.80 0.91 0.99
0.5 0.81 0.91 0.99
1.0 0.81 0.91 0.99
5.0 0.81 0.91 0.99

decrease notably when regularizing the network. Computation time per epoch does not increase
significantly, although fine-tuning the NN adds more total computation time, since we need to train
the NN for additional epochs. This time could be further reduced by freezing the lower convolutional
layers during fine-tuning.

6 Discussion

Separating the dense layers led to less diffused heatmaps for different classes. This indicates that
diffusion is at least partially caused by high neuron activations overshadowing each other. We suspect,
that another cause is only considering positive weights during the relevance propagation, as DTD
does not take features speaking against a class into account.

We introduced a way to measure diffusion, dependent on the difference to the heatmap for the original
output. Ideally, we would measure how much the heatmap created is different from the ground
truth. Since we do not have a ground truth for the heatmap, measuring the difference offers a viable
alternative if we ensure that heatmaps are produced in a meaningful way.

Constraining the dense layers with an L1 penalty led to a measurable reduction of diffusion in
heatmaps while not harming accuracy of the NN. We found that the explanation for single classes
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Input HM Sneaker HM Ankle boot

(a) Baseline NN

Input HM Sneaker HM Ankle boot

(b) L1 regularized NN

Figure 5: Baseline NN and L1 regularized NN heatmap comparison on FashionMNIST. For the L1
regularized network, the sneaker ending below the ankle is more relevant compared to the ankle boot.

(a) Baseline (b) L1 regularized (λ = 1.0)

Figure 6: Visualization of dense layer weights for baseline and L1 regularized network. Positive
values are red, negative values are blue.

improves by using a pre-trained neural net and fine-tuning with L1-regularization without suffering a
loss in accuracy. In Figure 6, a visualization of a densely connected layer, it is also visible that the
positive weights are largely restricted to the respective class blocks and will therefore not influence
each other during relevance propagation. A disadvantage is that we add an additional free parameter.

In addition to retrieving explanations for non-dominant classes, it would follow that soft block
regularization leads to more meaningful explanations for the dominant class as well, since heatmaps
no longer include features that add relevance to other classes in highly ambiguous images. However,
we cannot verify this in a quantified way.

7 Conclusion

The goal of our work was to retrieve sensible explanations for non-dominant classifications with
DTD. We find that enforcing sparsity in the dense layers alleviates diffusion and leads to more
meaningful explanations. Using L1 regularization to softly separate dense layers in fine-tuning leads
to a sensible explanation for non-dominant classes. It reduces diffusion but does not eliminate it.
Unfortunately, this solution is not scalable for a large number of classes, as each class would not have
enough unrestricted neurons for a good classification performance. Solving this problem for DTD
remains an open problem.
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