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Abstract
We propose a novel explanation module to explain the predictions made by deep learning.
Explanation module works by embedding a high-dimensional deep network layer nonlin-
early into a low-dimensional explanation space while retaining faithfulness, so that the
original deep learning predictions can be constructed from the few concepts extracted by the
explanation module. We then visualize such concepts for human to learn about the high-level
concepts that deep learning is using to make decisions. We propose Sparse Reconstruction
Autoencoder (SRAE) for learning the embedding to the explanation space. SRAE aims to
reconstruct part of the original feature space while retaining faithfulness. The proposed
method is applied to explain CNN models in image classification tasks, and several novel
metrics are introduced to evaluate the performance of explanations quantitatively without
human involvement. Experiments show that the proposed approach could generate better
explanations of the mechanisms CNN to use for making predictions in the task.

1 Introduction
With all its incredible advances, the usage of deep learning in real applications still must overcome
a trust barrier. Imagine scenarios with a doctor facing a deep learning prediction: this CT image
indicates malignant cancer, or a pilot facing a prediction: make an emergency landing immediately.
These predictions may be backed up with a claimed high accuracy on benchmarks, but it is human
nature not to trust them unless we are convinced that they are reasonable for each individual case. The
lack of trust is worsened because of known cases where adversarial examples can fool deep learning
to output wrong answers [8, 3]. In order to establish trust, human needs to understand how deep
learning makes decisions. Such understanding could also help the human to gain additional insights
into new problems, potentially improve deep learning algorithms, and improve human-machine
collaboration.

People like explanations of the form “A is something because of B, C, and D", e.g. this is a bird
because it has feathers, wings and a beak. This type of explanation is concise – there are not a hundred
different reasons that add up to explain that A is something. Besides, it relies on high-level concepts
B, C, and D. Both are often at odds with deep learning predictions, which are combinations of outputs
from thousands of neurons in dozens of layers. Approaches have been proposed to visualize each of
the filters [10] and for humans to name them [1], but it is difficult for this approach to obtain a concise
representation. On the other hand, many other approaches generate attention maps that backtrack
a decision to specific important areas in the original image [7, 2, 12, 11]. These are often nice and
quite informative, but they work on individual images and do not provide any high-level concept
that can be broadly applicable to many images simultaneously, nor can we believe they are complete
explanations so that we can trust them.

In this paper, we make an attempt to reconcile these explanation approaches by extracting several
high-level concepts from deep networks to aid human understanding. Our model attaches a separate
explanation network to a certain layer in the deep network to reduce the network to a few human-
understandable concepts, from where one can generate predictions similar to the original deep network
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Figure 1: (a) The explanation module is a dimensionality reduction mechanism so that the original prediction
ŷ can be reproduced from this low-dimensional space. Here we focus on 1-dimensional outputs. A multi-
class understanding in principle can be built up from separate understandings of one-against-all classifiers; (b)
Comparison of ExcitationBP and x-features.

(Fig. 1(a)). We focus on making those concepts to be faithful, that the deep learning predictions
can be faithfully approximated from those few concepts; and local, that the concepts are relatively
spatially localized in images so that the human can understand them.

2 Model Formulation
We propose to learn an explanation module (Fig. 1(a)), a module that can be attached to any layer of
a deep network. It attempts to learn an embedding that lowers the dimensionality of an intermediate
layer and directly learn a mapping from such an explanation layer to mimic the output of the original
deep learning network (DNN).

We denote the input feature space of explanation module as Z(x;W), where x and W are the
input features and parameters (from multiple layers) of the original DNN model, respectively, and Z
represents the output of a particular intermediate layer in the network. The explanation module is
used to embed Z to an explanation space, denoted as E(Z;θ), where θ represents parameters of the
embedding that need to be learned. As a shorthand, we will also refer to the explanation space as an
x-layer, and each dimension in the x-layer as an x-feature. Note that in the explanation, we do not
attempt to change the parameters W,b of the original DNN model. The explanation module can
in principle be attached to any layer in the DNN, although the closer to the prediction, the higher
level the concepts are and it becomes easier to mimic the prediction of DNN with a low-dimensional
embedding. In this paper, we focus on attaching explanation modules to fully-connected layers.

Here we propose a novel network called Sparse Reconstruction Autoencoder (SRAE), which handles
the objective as defined in (1). SRAE is also a neural network, hence can seamlessly combine with
the original prediction DNN, making the following visualization process simple. The encoding layer
in SRAE forms the explanation space E. We utilize the encoding layer to mimic the predictions, and
also to reconstruct part of the features in Z which are responsible for the prediction target.
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There are 2 terms in optimization (1), which are faithfulness loss and sparse reconstruction loss.
The first item attempts to be faithful to the original DNN. The prediction result of SRAE ȳ(i) is
v>E(Z(i);θ), which is optimized to be similar to the original prediction ŷ(i) of DNN. Here θ is the
parameter for encoder; v is the parameter for prediction; M is the number of the training examples.

The second item of the optimization attempts to prevent degeneracy where ŷ(i) itself can be used as x-
feature in the explanation space. Here Sz is the dimensionality of the original feature layer Z; k is one
dimension from Z; q > 0 is a sparsity parameter for the log penalty [4]; φ−1 is the reconstruction map-
ping which maps the explanation space E back to Z; θ̃ is the parameter for reconstruction (decoder);
Z
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k measures the capability of reconstructing the k-th dimension in the space of Z. With the sparsity

term, optimization (1) enables the explanation space to only reconstruct features that are responsible
for the prediction target, and refrain from reconstructing other irrelevant dimensions, which improves
the interpretability of the Explanation Space.

Note that SRAE is different from conventional sparse autoencoder where the autoencoder activations
in the hidden layers are constrained to be sparse. In SRAE, the sparsity constraint is on the amount of
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Method SRAE NN SAE Z ExcitationBP
Freg Training 0.0831 0.0657 0.0987 — —

Testing 0.1539 0.1170 0.1928 — —
Locality 1.9694 2.3078 2.1492 1.9623 2.4934

Table 1: The Faithfulness and Locality for methods in 30
categories selected randomly. The column Z represents the
average locality computed over all the dimensions of Z, the
4096-dimensional first fully-connected layer of the deep net-
work. This is obtained by separately running ExcitationBP on
each dimension of Z and evaluating the resulting heatmaps.

Figure 2: The most important x-feature for several
categories. The weight above the feature is vnEn.

input dimensions to be reconstructed. In general, various sparsity functions can be used here such as
the L1 penalty, epsilon-L1 penalty [4], the Kullback-Leibler divergence [5], etc. Here we choose the
log penalty in our proposed model because it is differentiable, does not have singularities, and has
a nice gradient form that is easy to solve with backpropagation. SRAE can be applied as a general
method to the domains where input feature selection and feature coding are both needed.

3 Experiments
We utilize the CUB-200-2011 dataset [9] in the experiments. This is a task for fine-grained bird classi-
fication into 200 categories. The most challenging part in the experiments is to find objective metrics
to evaluate the performance of the explanation module, since the explanation of images is a relatively
subjective matter. Given image Im, for each neuron n in the x-layer and each pixel (i, j) in Im,

we denote Sn,m
i,j , P (Pixelmi,j |Neuronn) =

Cn,m
i,j∑

(i,j)∈I Cn,m
i,j

, where Cn,m
i,j is the contrastive marginal

winning probability (c-MWP) generated by ExcitationBP [11] for pixel (i, j) in Im with neuron n in
x-layer, (i, j) is the coordinate of the pixel. For the CUB dataset, since the given part label of each
image is just one pixel in the middle of the part, and there is no extra information about the shape
and the size of the part regions, we utilize the Voronoi diagram to partition the bounding box into 15
regions in which the nearest neighbor part annotation in each region would be the same, then compute
the probability Sn,m

p , P (Partmp |Neuronn) =
∑
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We propose a couple of metrics to evaluate the performance of the explanation module: (1) Faithful-
ness: Freg = 1
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The fine-tuned VGG19 model [6] for CUB-200-2011 birds is used as the prediction DNN to be
explained. The explanation network is a 3 middle layers SRAE. We trained an explanation module on
a random 30 of the 200-dimensional outputs of the DNN. For each category, we utilized 50 positive
examples and 8, 000 negative examples as the training data; the remaining positive examples (8− 10)
and 2, 000 negative examples as the testing data. The number of the x-features is set to 5, as our
experiments showed that more x-features do not improve performance in this dataset and create
x-features which have 0 weight in approximating ŷ, indicating that one one-against-all classifier of
one bird does not depend on many high-level visual features. We compared the proposed SRAE with
a fully-connected neural network (NN), a conventional stacked autoencoder (SAE), as well as directly
performing ExcitationBP on the classification output ŷ (ExcitationBP).

In Table 1, we summarize the results for different explanation embedding approaches with different
parameters. Results show that we can achieve excellent faithfulness to the prediction. The Freg in
both training and testing are less than 0.2. Since ŷ before softmax usually has a range in [0, 50] and
especially large in the positive examples, we consider the regression loss to be small. Our algorithm
showed significant improvements over NN, SAE and ExcitationBP in terms of locality, indicating
that we are capable of separating information that comes from different parts. The average locality of
the x-features generated by SRAE are almost matching the average locality of features in Z. This
means we are close to the limit of part separation on this layer: many of the features on the Z layer
already represent multiple parts. In future work we plan to conduct more experiments explaining
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earlier convolutional layers to see whether the locality could be further lowered while preserving
faithfulness. We also show some qualitative examples from different categories in Fig.2 and Fig.1(b).
Fig.2 shows the most important x-feature in several categories, where we can see that they fit our
intuitions on the discriminative features of the birds. Fig.1(b) compares x-features with directly
running ExcitationBP on ŷ. One can see x-features nicely separate different discriminative aspects
of the bird while ExcitationBP sometimes focuses only on one part and miss others, and sometimes
produces a heatmap that incorporates many parts simultaneously. Also, each x-feature seems distinct
enough as a concept. Hence we believe they indeed provide more explanation on the decisions made
by CNN algorithms.

4 Conclusion
In this paper we propose an explanation module, that can be attached to any layer in a deep network
to compress the layer into several concepts which can approximate a 1-dimensional prediction output
from the network. A sparse reconstruction autoencoder (SRAE) is proposed to avoid degeneracy and
improve orthogonality. We also propose automatic evaluation metrics to evaluate the explanation on
a fine-grained bird classification dataset. Quantitative and qualitative results show that the network
can indeed extract high-level concepts from a CNN that make sense to human. We view this
work as one of the first steps toward understanding deep learning and have many future plans to it,
including performing more experiments on different kinds of data, including those without ground
truth, and extending it to explain other types of neural networks, such as recurrent networks and
convolutional-recurrent ones.
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