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Abstract
This paper explains predictions of image caption-
ing attention models beyond visualizing the at-
tention itself. In this paper, we develop variants
of layer-wise relevance backpropagation (LRP)
tailored to image captioning models with atten-
tion mechanisms. We show that the explanations,
firstly, correlate to object locations with higher
precision than attention, secondly, identify ob-
ject words that are unsupported by image con-
tent, and thirdly, provide guidance to improve the
model. Results are reported using two different
image captioning attention models trained with
Flickr30K and MSCOCO2017 datasets. Experi-
mental analyses show the strength of explanation
methods for understanding image captioning at-
tention models.

1. Introduction
Image captioning is a task which gained interest along with
the revival of neural networks. It aims at generating text
descriptions from the image content. It requires a compre-
hensive understanding of the image and a well-performing
decoder which translates the image features into sentences.
Attention layers are an established component of image cap-
tioning models, particularly those for the image component.
They enable the decoder to focus on a sub-region of the
image when predicting the next word in the caption (Yang
et al., 2016; Xu et al., 2015; Yao et al., 2017; You et al.,
2016; Lu et al., 2017; Anderson et al., 2018; Vaswani et al.,
2017; Huang et al., 2019). Attention heatmaps for the im-
age part reflect which parts of the image are related to the
generated words. As such they are a natural resource to
explain the prediction of a word in a caption. However, for a
multi-input model, the outputs of image captioning models
rely on not only the image input but also the previously
generated word sequence. Attention heatmaps for the image
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Figure 1. Image explanations of the word man (the first row) and
wave(the second row) with attention, Grad-CAM, Guided Grad-
CAM(G.Grad-CAM) and LRP. The latter three also provide lin-
guistic explanations and the texts on the bottom show the linguistic
explanations of the word wave. Red pixels and words indicate
positive explanation scores and blue indicates negative explanation
scores. Grad* denotes both Grad-CAM and Guided Grad-CAM.

part will meet difficulties to disentangle the contribution of
the image input and the text input.

To this end, we pose two questions here. Firstly, how suit-
able are attention heatmaps for the image part to explain
the decision for a word when creating a caption? Secondly,
to what extent is the image content actually used when pre-
dicting a caption word? These questions correspond to two
desirable properties in image captioning: grounding (good
localization from the attention model) and the consistency
of the predicted caption to the image content.

To address the above questions, we adapt LRP and Grad-
CAM to attention-guided models and explain image cap-
tioning predictions. Figure 1 shows an example of the ex-
planations. Both positive and negative evidence is shown
in LRP and Grad-CAM explanations in two aspects: the
contribution of the image input visualized as heatmaps and
the contribution of previously generated words to the latest
predicted word. The contribution of previously generated
words to the latest predicted word we will refer to as the
linguistic explanation. It reveals those among the previously
generated words which contribute strongly to the prediction
of the explained word.

The contributions of this paper are 1). We establish expla-
nation methods which reveal the contribution of both the
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image and text inputs for image captioning attention mod-
els; 2). A comparison of the grounding property between
attention and explanations; 3). We show that LRP can mea-
sure to what extent image content is used to predict the next
word and can identify the object words that are hallucinated
by the model. 3). We develop a fine-tuning strategy us-
ing LRP explanations to tackle the hallucination problem
of image captioning, at the same time maintain the overall
performance.

2. Related Work
Image Captioning Image captioning task has gained sig-
nificant progress with deep neural networks(DNN). Many
models adopt the encoder-decoder fashion to bridge image
and text (Vinyals et al., 2015; Karpathy & Fei-Fei, 2015;
Soh, 2016). Attention mechanisms are introduced to image
captioning models to tell the decoder where to look to gen-
erate the words (Xu et al., 2015; Lu et al., 2017; You et al.,
2016; Vaswani et al., 2017; Huang et al., 2019). Some works
boost image captioning with enhanced image features using
object detection models (Anderson et al., 2018) or graph
convolutional networks(GCN) (Yao et al., 2019). A recent
trend of image captioning is to include novel objects into
the generated captions, which overcomes the limitation of
fixed training vocabulary and achieves better generalization
(Lu et al., 2018; Venugopalan et al., 2017; Li et al., 2019;
Agrawal et al., 2019). This paper focuses on explaining the
predictions of image captioning models and analyzing the
interpretability of attention and explanation methods. We ex-
periment with the fundamental CNN-RNN based attention
models.

Explanation methods for neural networks. A number of
methods explain DNNs such as gradient based methods
and decomposition-based methods. Gradient based meth-
ods like gradient, gradient∗input (Simonyan et al., 2013),
guided backpropagation (Springenberg et al., 2015), inte-
grated gradient (Sundararajan et al., 2017), Grad-CAM, and
Guided Grad-CAM (Selvaraju et al., 2017), process and
visualize the backpropagated gradient in different ways as
explanations. Decomposition based methods often rely on
variants of neuron-wise Taylor decomposition (Montavon
et al., 2017), resulting in different decomposition rules such
as ε-rule, αβ-rule (Bach et al., 2015). Relevance scores may
also be obtained by DEEPLIFT (Shrikumar et al., 2017)
and PatternAttribution (Kindermans et al., 2018), and the
generically applicable LIME (Ribeiro et al., 2016). SHARP
(Lundberg & Lee, 2017) explains many of the above meth-
ods in a general framework of Shapley values.

As for explaining image captioning models, Grad-CAM and
Guided Grad-CAM has been used to explain non-attention
image captioning models (Selvaraju et al., 2017). Attention
is often visualized to verify the correctness of the attention-

Figure 2. Image captioning model with grid-TD attention.

guided image captioning models.

3. Methodology
In this section, we introduce the image captioning attention
and explanation models used in our experiments. While
many explanation methods are available, for showing se-
lected qualitative differences to attention, it is sufficient to
focus on a few. We will provide details of the extension
of LRP, Grad-CAM, and Guided Grad-CAM to our two
image captioning models. For clarity, Grad* denotes both
Grad-CAM and Guided Grad-CAM in the following.

3.1. Attention mechanisms applied in this study

We introduce a grid-TD attention mechanism based on two
well-performing ones here: the adaptive attention mech-
anism (Lu et al., 2017) and the bottom-up and top-down
attention mechanism (BUTD) (Anderson et al., 2018). As
illustrated in Figure 2, the image is first encoded by a CNN
into image features V . Derived from the output of the CNN
encoder, a global image feature vector vg is concatenated
with each word embedding to generate the sequential input
of an LSTM decoder, which is then augmented with the
grid-TD attention module.

The grid-TD attention mechanism contains the top-down
attention LSTM module, the adaptive module, and the lan-
guage LSTM. The top-down attention LSTM generates a
visual sentinel st using the memory cellm1

t and the sequen-
tial input x1

t . st contains the text-only information.

st = σ(Wxx
1
t +Whh

1
t−1)� tanh(m1

t ) (1)

The adaptive module takes st and V = {v1,v2, . . . ,vL}
as the input and calculates the context ĉt. Let α(t) denote
the attention weight for the image features V , which is com-
puted from both V and the hidden state h1

t of the top-down
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attention LSTM(eq.(2)(3)), resulting in a visual context ct.

a = wa tanh(WvV +Wgh
1
t1

T ) (2)

α(t) = softmax(a) (3)

ct =
∑L

i
α
(t)
i vi (4)

st is further concatenated to the spatial image features V
and the attention is redistributed as α̂(t). We can obtain the
attention weight of st (the last element of α̂t), denoted as
βt. The final context ĉt is a linear combination of ct and st
weighted with βt.

b = wa tanh(Wsst +Wgh
1
t )) (5)

α̂(t) = softmax([a : b]), βt = α̂
(t)
L+1 (6)

ĉt = (1− βt)ct + βtst (7)

[·] indicates concatenation. ĉt is passed to the language
LSTM module and the fc layer to predict the next word.
In the experiment, we apply explanation methods to both
the adaptive attention mechanism in (Lu et al., 2017),which
is composed of only the top-down LSTM and the adaptive
module, and the more complex grid-TD attention mecha-
nism.

3.2. Extending LRP to attention mechanisms

This section takes the grid-TD attention mechanism as an
example to elaborate each step of applying LRP to image
captioning attention models, as summarized in Algorithm
1. Firstly, we initialize the relevance of the T -th word,
R(wordT ), from the output score of the fc layer. LRP-type
operations for computing relevance R(·) are then applied
to the layers fc, ⊕, Language LSTM, attention-module, Top-
down attention LSTM, and CNN. The LRP operations used
for these layers are shown as the =⇒ in Algorithm 1.

For the fc and ⊕ layers, we backpropagate the LRP rel-
evance according to the ε-rule introduced in (Bach et al.,
2015). For the convolutional layers in the image encoder,
we apply αβ-rule (Bach et al., 2015). As for the adaptive
module, we interpret

ĉt = (1− βt)
∑

i
α
(t)
i vi + βtst (8)

as a linear combination over {V = (vi)
L
i=1, st}, while

treating the coefficients ((1−βt)α(t)
i )Li=1, βt as the weights

of the linear combination. Thus, we can apply the ε-rule to
it to obtain R(V ) and R(st).

For each word to be explained, LRP generates an image
explanation and the relevance scores for all the preceding
words.

Algorithm 1 LRP for grid-TD attention model to explain
wordT . For the appearing symbols consider Figure 2.
Notations: α(t) (eq.(2)(3)), βt (eq.(6)), and st (eq.(1));
LRP-LSTM (Arras et al., 2017); ε-rule, LRP-CNN (Bach
et al., 2015).

Require: R(wordT ), α(t), βt
Ensure: R(image), R(wordT−1), . . . , R(word0)

1: R(wordT ), fc
ε-rule
====⇒ R(ĉT + h2

T )

2: R(ĉT + h2
T ),⊕

ε-rule
====⇒ R1(ĉT ), R(h2

T )
3: for t ∈ [T, . . . , 0, start] do
4: R(h2

t ),Language-LSTM LRP-LSTM
=====⇒

R2(ĉt), R(h
1
t ), R1(h

2
t−1)

5: R1(ĉt) +R2(ĉt), adaptive module ε-rule
====⇒

R(st), Rt(V )

6: R(h1
t ), R(st),Top-down Attention LSTM LRP-LSTM

=====⇒
R(W e

t−1), Rt(vg), R2(h
2
t−1)︸ ︷︷ ︸

=R(x1
t )

, R(h1
t−1)

7: R(W e
t−1)

∑
=⇒ R(wordt−1)

8: end for
9:

∑
tRt(V ),

∑
tRt(vg),CNN

ε-rule,LRP-CNN
=========⇒ R(image)

3.3. Extending Grad* methods to attention
mechanisms

Besides LRP, Grad-CAM and Guided Grad-CAM are also
adapted to the above attention mechanisms. Both methods
backpropagate the gradient of a prediction to the image fea-
ture maps of the CNN encoder. The gradients of each feature
map are summed up as the weight of the image feature (Sel-
varaju et al., 2017). Grad-CAM reshapes and up-samples the
weight vector derived from the gradient to generate the im-
age explanation. To obtain fine-grained and high-resolution
explanations, Grad-CAM is fused with guided backpropaga-
tion (Springenberg et al., 2015) by pixel-wise multiplication
and this fused method is Guided Grad-CAM. The linguistic
explanation of Grad* methods is obtained by summing up
the gradients of the word embedding.

4. Experiments
We train the adaptive attention model and the grid-TD at-
tention model on Flickr30K and MSCOCO2017(Lin et al.,
2014) datasets for the experiments. Dataset: We prepare
the Flickr30K dataset as per the Karpathy split (Karpathy &
Fei-Fei, 2015). For MSCOCO2017, we use the original vali-
dation set as the offline test set and extract 5000 images from
the training set as the validation set. The train/validation/test
sets are with 110000/5000/5000 images. Vocabulary is built
only on the training set. The words that appear less than 3
times in the training set are not considered in the vocabu-
lary for Flickr30K, and 5 times for MSCOCO2017. CNN
encoder: We adopt the pre-trained VGG16 (Simonyan &
Zisserman, 2015) on ImageNet as the image encoder and
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Table 1. The performance of the adaptive attention model and
the grid-TD attention model on the test set of Flickr30K
and MSCOCO2017 datasets. The evaluation metrics are FB :
FBERT (idf)(Zhang et al., 2019), C: CIDEr(Vedantam et al., 2015),
S: SPICE(Anderson et al., 2016),R-L: ROUGE-L(Lin, 2004), M:
METEOR(Banerjee & Lavie, 2005)

Flickr FB C S R-L M
adaptive 90.10 42.28 15.65 48.68 21.25
grid-TD 90.24 44.95 16.23 49.71 21.75
COCO FB C S R-L M

adaptive 91.19 87.75 20.28 55.79 26.61
grid-TD 91.25 90.67 20.49 56.41 27.04

extract the output of ’block5 conv3’ layer as the raw image
features. The raw image features are expanded to form the
grid spatial image features A = {a1,a2, . . . ,aL}. A is
further encoded with a time distributed fully connected layer
to obtain V , vi = ReLU(Waai) and the global image fea-
ture vg = ReLU(Wb

1
L

∑
ai). Wa and Wb are trainable

parameters. LSTM decoder: See Figure 2. The dimension
of word embedding and the hidden state is set as 512. LRP
parameters: We use αβ-rule for convolutional layers and
ε-rule for fully connected layers. We set α = 1, ε = 0.01.
As for LRP-LSTM, we adopt ε-rule with ε = 0.01. The
performance of the adaptive attention and grid-TD attention
model with beam size 3 is listed in Table 1.

4.1. Explanation results and evaluation

Figure 1 shows an example of the explanations, where LRP
and Guided Grad-CAM both provide high-resolution image
explanations and linguistic explanations. We here quantita-
tively analyze the linguistic explanation by a word ablation
experiment and analyze the localization property of the im-
age explanation by an object detection experiment.

Word ablation experiment for linguistic explanation
The word ablation experiment is designed to prove that
the related words found by explanation methods contribute
to the predictions. The related words are with higher LRP
scores or higher absolute value of Grad* scores. We experi-
ment with two kinds of words in the generated caption, the
stop words and the object words. The first 5 words in the
generated captions are not considered. For each target word,
we calculate the linguistic explanation using LRP and Grad*
methods and delete the top-3 related words. The modified
word sequence and the test image are then fed into the same
captioning model and we observe how the probability of
the target word changes. If the deleted words contribute
to the prediction, the probability of the target word will
drop. Table 2 shows how often the probability drops in this
ablation experiment. A random ablation is included as the
baseline. LRP and Grad* methods can find the relevant
words more often than the random baseline, which proves

Table 2. The percentage of the words that receive probability drops
in the ablation experiment. The numbers within the brackets indi-
cate the total number of experimented words. A higher percentage
means the model relies more on the linguistic information to gen-
erate the target words. Experimented with the MSCOCO dataset.

adaptive LRP Grad* random
stop words (12902) 90.32% 90.25% 78.32%

category words (2188) 92.06% 92.97% 84.30%
grid-TD LRP Grad* random

stop words (12943) 71.21% 73.65 % 17.49%
category words (1888) 54.87% 48.04 % 11.76%

that explanation methods can find the words that contribute
to the prediction. From the results of the grid-TD model,
we find that the stop words receive probability drops more
often than the category words. This can be explained that
the object words depend more on the image information
and the stop words depend more on the linguistic informa-
tion. However, the adaptive attention model is much more
sensitive to the linguistic information.

Measuring the correlation of explanation scores to ob-
ject locations In this part, we show that the image explana-
tion of LRP and Grad* methods provide better localization
property than attention, moreover, the sign of LRP explana-
tion scores reflects the support for or the opposition to the
prediction.

This experiment is conducted with the MSCOCO dataset,
which provides referenced objects and the corresponding
bounding boxes for each image. We evaluate the localiza-
tion correctness of image explanations with the attention
correctness measure (Liu et al., 2017), which is designed for
attention models. Specifically, we explain the object words
that appear in both the predicted captions and the referenced
ground truth captions and obtain the image explanation E.
We only keep the positive scores of E, Ep = max(E, 0)
and normalize it to [0, 1]. The correctness of the localiza-
tion is defined as the summation of Ep scores within the
bounding box divided by the total score:

Correctness =

∑
ij∈bboxEp[i, j]∑

ij Ep[i, j]
∈ [0, 1] (9)

Figure 3 shows the average correctness of all the correctly
predicted object words of the grid-TD model (the results
of the adaptive attention model are similar). The curve is
generated by counting the normalized Ep scores that are
larger than varying thresholds. We can see all the expla-
nation methods achieve higher correctness than attention.
To further get insights into the role of the sign for LRP
and Guided Grad-CAM explanations, we locate the objects
using the absolute value of the negative image explanation
scores, En = max(−E, 0), shown as the dashed line ’N-
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Figure 3. The average correctness of all the 5786 correctly de-
tected objects using the grid-TD attention model on the test set of
MSCOCO2017 dataset. Higher is better.

LRP’ and ’N-Guided-Grad-CAM’. The low correctness
of ’N-LRP’ and the high correctness of ’N-Guided Grad-
CAM’ verifies that the sign of LRP explanations reveals
the support(’+’) or the opposition(’-’) of a pixel to the pre-
dictions, while for Guided Grad-CAM both positive and
negative pixels are related to the predictions and irrelevant
pixels have low absolute scores.

4.2. Using explanation to improve the model

In this section, we show that explanation methods such as
LRP and guided-Grad-CAM have the capability to iden-
tify the caption words that are not supported by the image
content. In a second step, starting from this property, we
propose an LRP inference fine-tuning strategy to improve
the image captioning model.

Identifying hallucinated words using explanations We
observe that some predicted words are not supported by the
image content and constitute false-positive. This is called
object hallucination in image captioning (Rohrbach et al.,
2018). These words are generated from the learned sentence
correlation, without looking at the image, and could be
inferred from the frequent words in the training set.

Figure 4 illustrates the explanation of LRP, Grad*, and
attention for two hallucinated words shirt and cellphone.
Attention heatmaps hardly tell the reason why the model
emits such words, while explanation methods cast light on
the details. shirt is likely to be generated from the linguis-
tic information because LRP shows negative and Guided
Grad-CAM shows zero scores in the heatmaps. LRP finds
supporting words in the linguistic explanation shown in red.
For the second example, the model seems to mistake the cup
for a cellphone since the edges of the hand and the cup are
highlighted in the LRP explanation heatmap, which resem-
bles a cellphone. Guided Grad-CAM also shows intensive
blue and red pixels near the cup and hand, while attentions
are dispersed to the person. We include more examples in
Figure 5 where LRP heatmaps exhibit almost all negative

Figure 4. Explanation of LRP, Grad* and attention for unsupported
words shirt and cellphone. Colors of the words represent differ-
ent ranges of the normalized LRP relevance scores, red: [0.3, 1],
yellow: (0, 0.3], blue:(−1, 0], gray: not related.

Figure 5. LRP explanations for hallucinated words. LRP explana-
tion shows nearly all negative scores for (a)-(e). For (f), the model
may mistake the yellow ring as a banana.

evidence or very similar features for hallucinated words.

To quantitatively analyze whether the explanations are ca-
pable of identifying hallucinated words, we use the image
explanation scores to detect the hallucinated word and evalu-
ate this property by calculating the AUC value. Specifically,
object words that appear more than 50 times in the predic-
tions of the Flickr30K test set are used in this experiment 1,
resulting in 889 true-positive and 771 false-positive words
using grid-TD attention model and 816 true-positive and
766 false-positive words using adaptive attention model.
True-positive words are labeled 1 and false-positive words
receive a label 0. Each word is assigned with a score as
the mean of the image explanation. We also evaluate the
maximal value of LRP explanation scores (L-max), mean
of the absolute value of Guided Grad-CAM (Guided Grad-
CAM-abs), and the intrinsic model parameter 1− βt, which
weights the image information and linguistic information.

1These object words include man, shirt, woman, people, group,
street, dog, bench, boy
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Table 3. The AUC scores of different explanation methods. L.:
LRP, G.: Guided Grad-CAM, Att.: Attention. Higher is better.

AUC L.-max L. G.-abs Att. 1− βt G.
grid-TD 0.61 0.64 0.54 0.53 0.54 0.45
adaptive 0.66 0.64 0.58 0.51 0.53 0.42

Table 3 summarizes the AUC value of explanation meth-
ods, attention, and the model parameter β. We find that
the intrinsic model parameter 1− βt performs better than
attention maps, the absolute value of guided-Grad-CAM
performs better than 1 − βt, and the preferable ability of
LRP to identify the hallucinated words.

Alleviating hallucination problem with LRP explana-
tions With the above finding, we introduce an LRP inference
fine-tuning strategy to alleviate the object hallucination prob-
lem. The idea is to re-weight the model prediction scores (or
”logits”) p ∈ Rlv from the fc layer by a weight m during
training :

p̂(r) = m(r)p(r), r ∈ {1, . . . , lv} (10)

m, p and p̂ are vectors with length as the vocabulary size,
lv and r is the index. Given a predicted caption {wt}Tt=0,
we explain each of its words wt (excluding stop words) by
LRP to obtain image explanation R(image). R(image)
is normalized with its maximal absolute value resulting in
Et ∈ [−1, 1]. Let h(wt) be the one-hot mapping of word
wt onto its vocabulary index in {1, . . . , lv}. The weights
m ∈ Rlv are defined as:

m(h(wt)) =

{
1 + mean(Et) wt 6∈ stop words
1 otherwise

(11)

If a word is frequently predicted by the model but has neg-
ative mean(Et), then p̂(r) will decrease its probability. In
other words, p̂(r) guides the model to look more at the im-
age.

During training, we calculate the cross entropy loss with
both the original predicted scores p and LRP-inference score
p̂, and combine both loss with a parameter λ ∈ [0, 1].

L = λCE(p) + (1− λ)CE(p̂) (12)

where CE denotes the cross entropy loss.

We fine-tune our captioning models on Flickr30K and
MSCOCO2017 datasets using LRP inference with learn-
ing rate 1e− 6, λ = 0.5. The batch size is 32 and we train
320 iterations for Flickr30K dataset and 500 iterations for
MSCOCO2017 dataset. As a baseline, we also fine-tune our
pre-trained models without LRP inference using the same
training samples and parameters. The overall performance
after LRP inference fine-tuning maintains or even slightly
better as shown in Table 4.

Table 4. The performance of the models tuned w/wo LRP inference
(L.-) on the test set. FB : FBERT (idf), C: CIDEr, S: SPICE, R-L:
ROUGE-L, M: METEOR.

Flickr FB C S R-L M
adaptive 90.06 41.11 15.68 48.58 21.14

L.-adaptive 90.08 40.35 15.76 48.70 21.30
grid-TD 90.21 45.26 16.27 49.66 21.86

L.-grid-TD 90.25 45.73 16.38 49.92 22.95
MSCOCO FB C S R-L M
adaptive 91.22 87.68 20.30 55.99 26.47

L.-adaptive 91.23 88.22 20.31 55.99 26.49
grid-TD 91.20 89.07 20.41 56.18 26.89

L.-grid-TD 91.20 89.21 20.40 56.18 26.90

Table 5. The mean average precision (mAP) of the frequent ob-
ject words. Results of models tuned w/wo LRP inference (L.-).
True positive words are supported by the image content and false
positive words are hallucinated. Higher mAP means less object
hallucination.

mAP ada. L.-ada. grid-TD L.-grid-TD
Flickr30K 51.14 54.57 54.66 55.22
MSCOCO 63.53 64.58 64.13 64.19

To evaluate whether the captioning models hallucinate less,
we calculate the mean average precision (mAP) for the
frequent object words, which appear over 50 times for
Flickr30K dataset and over 100 times for MSCOCO2017
dataset. The mAP results are listed in Table 5. We can
observe an improvement in mAP with the proposed LRP-
inference fine-tuning. Furthermore, the improvement of the
adaptive model is larger than for the grid-TD model. This
matches our finding in the word ablation experiment (cf. Ta-
ble 2) that the adaptive attention model relies more on the
sentence correlation while the grid-TD model looks more at
the images, and thus is less prone to word hallucination.

5. Conclusion
We have applied a variant of LRP, Grad-CAM, and Guided
Grad-CAM to explain the attention-guided image captioning
models beyond visualizing the attentions. With the qualita-
tive explanation results and the quantitative evaluations, we
show that explanation methods provide more interpretable
information than attention including high-resolution image
explanations, improved localization, and the capability to
identify supporting words in the generated caption for tar-
geted explained words. Explanations methods are shown
to identify hallucinated words and help to reduce object
hallucination meanwhile maintain the performance. The
comparison of explanation types shows a diversified picture.
Guided Grad-CAM performs best for localization, LRP best
for identifying words unsupported by image content.
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