
Explain and Improve: Cross-Domain Few-Shot-Learning Using Explanations

Jiamei Sun 1 Sebastian Lapuschkin 2 Wojciech Samek 2 Yunqing Zhao 1 Ngai-Man Cheung 1

Alexander Binder 1

Abstract
Cross-domain few-shot learning (CD-FSL) has
attracted much interest recently. In CD-FSL, we
need to address not only the issue of limited
labeled data in each class but also the domain
shift between training and test domains. In this
paper, we introduce a novel approach for CD-
FSL by leveraging the explanations of the FSL
models. First, we tailor the layer-wise relevance
propagation (LRP) method to explain the FSL
models. Second, we develop a model-agnostic
explanation-guided training strategy that dynami-
cally finds and emphasizes the features that are im-
portant to the predictions. We show that, without
introducing more parameters, explanation-guided
training effectively improves the model general-
ity under the cross-domain setting. We observe
improved accuracy of two FSL models: Relation-
Net (Sung et al., 2018), and cross attention net
(CAN) (Hou et al., 2019), on five few-shot learn-
ing datasets: miniImagenet, CUB, Cars, Places,
and Plantae, which are introduced by (Tseng et al.,
2020).

1. Introduction
In the past years, the explainability of predictors has at-
tracted attention in the machine learning community. A
large number of approaches have been developed. In this
paper, we do not present another new method. Instead, we
touch onto a mildly neglected dimension, namely the prob-
lem statements for which explainability is useful. Known
use cases are auditing of predictions(Lapuschkin et al.,
2019) and identification of biases in datasets(Selvaraju et al.,
2017). In this paper, we add a different use case. We con-
sider the question of whether explanations are suitable to
improve model performance in small sample size regimes.
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We choose few-shot classification (FSC) as the subject of
our study (Vinyals et al., 2016; Finn et al., 2017; Snell et al.,
2017; Sung et al., 2018; Satorras & Estrach, 2018; Rusu
et al., 2019; Sun et al., 2019; Hou et al., 2019).

Few-shot learning has two notable properties. Firstly, it
aims at generalization across sets of labeled tasks. Sec-
ondly, it relies on small sample sizes. In other settings,
the first choice for better generalization would be to label
more training data. The question arises whether explana-
tion scores computed for intermediate feature maps can be
employed to improve generalization in few-shot learning
in lieu of unavailable training data. This is not assured, as
explanations are computed on a per-sample basis, and, un-
like data-augmentation techniques do not create additional
samples.

Commonly, FSC models are evaluated using a test dataset
originating from the same domain as the training dataset.
(Chen et al., 2019) states that FSC methods will meet diffi-
culties in cases with domain shift between the training data
(source domain) and the test data (target domain). To tackle
the domain shift problem, we need to avoid overfitting to
the source domain. A recent work achieves this by learn-
ing a noise distribution for some intermediate layers in the
feature encoder (Tseng et al., 2020), while others rely on
adding batch spectral regularization over the encoded image
features (Liu et al., 2020), and employing novel losses (Yeh
et al., 2020; Chen et al., 2019). We propose an approach
from a different perspective: we leverage the explanations
for FSC methods to guide the model to learn features with
better performance.

We adapt LRP-type explanations(Bach et al., 2015) to FSC
models. LRP has generated usable explanations for CNN
(Bach et al., 2015), RNN(Arras et al., 2017), graph neu-
ral networks(GNN)(Schnake et al., 2020), and clustering
models(Kauffmann et al., 2019). It backpropagates a score
through the neural network and assigns relevance scores
to the neurons within the network. The LRP scores reflect
the importance of a neuron to the prediction, which we
can easily observe in Figure 1. Relying on this property,
we propose explanation-guided training for FSC models.
The LRP relevance scores of intermediate features are em-
ployed as weights. We construct the LRP-weighted feature
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Figure 1. LRP explanation heatmaps of the input image with 5
target labels. The experiment model is a RelationNet trained
on miniImagenet under the 5-way 5-shot setting. The first row
illustrates some example support images. The other two rows show
the explanation heatmaps of two query images, the African hunting
dog (denoted as dog in the figure) and the lion. Both images are
correctly predicted and the heatmaps are generated using different
target labels. Red pixels indicate positive LRP relevance score and
blue indicates negative. The strength of the color corresponds to
the value of the LRP relevance scores.

maps, which emphasize features that are more relevant to
the model predictions and downscale less relevant features.
LRP explanations are calculated for each sample-label pair
separately. The LRP-weighted features are fed into the
network to guide the training. This adds a label-dependent
feature weighting mechanism during training, reducing over-
fitting to the source domain.

The main contributions of this paper are 1) We derive expla-
nations for FSC models using LRP; 2) We investigate the
potential for improvement of model performance using ex-
planations in the training phase under small sample size set-
tings. 3) We propose an explanation-guided training strategy
to tackle the domain shift problem in FSC; We remark that
the principles used for explanation-guided training strategy
are model-agnostic and can be combined with many other
methods such as learned feature-wise transformation (LFT)
(Tseng et al., 2020). We will verify that LRP-weighted
features during training are improving generalization.

2. Related Work
Cross-domain few-shot classification methods It is com-
mon to develop cross-domain few-shot classification meth-
ods by basing them on existing FSC methods. LFT(Tseng
et al., 2020) learns a noise distribution and adds the noise
on some intermediate feature maps to generate more diverse
features during training and improve the model generality.
In the most recent CVPR Cross-Domain Few-Shot Learn-
ing challenge, (Liu et al., 2020) ensembled multiple feature
encoders and employed batch spectral regularization over

the image features for each encoder. Batch spectral regular-
ization penalizes the singular values of the feature matrix
within a batch so that the learned features maintain similar
spectra across domains. (Cai & Shen, 2020) combined the
first-order MAML(Finn et al., 2017) and the GNN metric-
based method (Satorras & Estrach, 2018). (Yeh et al., 2020)
applied prototypical triplet loss to increase the inter-class
distance and large margin cosine loss to minimize the intra-
class distance, which is also studied by (Chen et al., 2019)
that reducing intra-class variation benefits FSC especially
for shallow image feature encoders.

In our approach, we do not introduce more parameters like
(Tseng et al., 2020). We are similar to (Liu et al., 2020; Yeh
et al., 2020) in adding constraints on the image features. We
use LRP-weighted features to guide the model to dynami-
cally correct itself for each instance instead of penalizing
feature statistics over a batch.

Explanation for few-shot classification models To our
best knowledge, there have not been explanation methods
specially designed for FSC models. On the other hand, there
exist explanation methods for deep neural networks(DNN)
(Bach et al., 2015; Montavon et al., 2017; Simonyan et al.,
2013; Springenberg et al., 2015; Selvaraju et al., 2017;
Schnake et al., 2020) which can be adapted to FSC mod-
els, since many FSC models adopt CNN to encode image
features and many metric-based methods also adopts DNN
to learn the distance metric (Sung et al., 2018; Satorras &
Estrach, 2018; Liu et al., 2019). For FSC models that use
non-parametric distance metrics, we refer to (Kauffmann
et al., 2019) which neuralizes various K-means classifiers
and applies LRP to obtain explanations.

In this paper, we choose LRP to explain FSC models due
to its general applicability on both parametric and non-
parametric classifiers.

3. Explanation-guided training.
Before presenting our explanation-guided training, we first
introduce the cross-domain few-shot learning task and some
notations. For a K-way N-shot task, denoted as an episode,
we are given a support set S = {(xs, ys)}K∗Ns=1 containing
K classes and N labeled samples per class for training and
a query set Q = {(xq, yq)}

nq

q=1 from the same classes as S
for testing. A CD-FSC task is to train an FSC model using
episodes {Si,Qi} randomly sampled from a base domain
Dseen and test the model with episodes sampled from an
unseen domain Dunseen. We consider FSC models which
can be summarized as in Figure 2. This includes a number
of metric-based FSC models.

The support set S and query set Q are encoded by a CNN
(Sung et al., 2018; Hou et al., 2019), possibly with aug-
mented layers (Oreshkin et al., 2018; Tseng et al., 2020) to
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Figure 2. Explanation-guided training. Blue paths denote the con-
ventional FSC training. The red paths are added after one step
relying on the blue paths. The support samples S and the query
sampleQ are fed into an image encoder to obtain features fs and
fq , which are compared by a feature processing module. The
output of feature processing fp is fed into a classifier to make pre-
dictions. Both the feature processing and classifier modules vary
across different FSC methods. The Explain block explains the
model prediction p and generate the explanations for fp, denoted
as R(fp), which are used to calculate the LRP weight wlrp. This
is fed into the classifier resulting in the updated prediction plrp

obtain the support image features fs and the query image
features fq. fs and fq are further processed before classi-
fication, for example, (Sung et al., 2018) simply averages
the fs over classes and concatenate the averaged class rep-
resentations pairwise with fq, (Hou et al., 2019) designs
an attention module and generate the attention-weighted
support and query image features, (Liu et al., 2019) applies
GNN on fs and fq to obtain graph structured features.

The processed features are fed into a classifier for generating
predictions. The classifier can be cosine a similarity(Hou
et al., 2019), Euclidean distances(Snell et al., 2017), or
neural nets(Sung et al., 2018; Satorras & Estrach, 2018).

Explanation-guided training for FSC models involves the
following steps. For each training episode:

Step1: One forward-pass through the model and obtain the
prediction p, illustrated as the blue path in Figure 2.

Step2: Explaining the classifier. We initialize the LRP rel-
evance for each label and apply LRP to explain the classifier.
We can obtain the relevance of the classifier input R(fp),
illustrated as the Explain block. For FSC models which
implement a neural network as the classifier, the relevance
scores for each label can be initialized with their logits. For
the models using non-parametric distance measures such
as cosine similarity and Euclidean distance, the predicted
scores are positive for all labels, which will result in similar
explanations. For such cases, we refer to the logit function
in (Kauffmann et al., 2019) to initialize the relevance score.
Taking the cosine similarity as an example, we first calculate

the probability for each class using the exponential function
as eq(1) 1.

P (yc|fp) =
exp(β · csc(fp))∑K
k=1 exp(β · csk(fp))

(1)

csk(·) means the cosine similarity between a query sample
and class k. fp is the processed feature fed to the classifier.
β is a constant scale parameter to strengthen the highest
probability. With the probability, the relevance score of
class c is defined as:

Rc = log

(
P (yc|fp)

1− P (yc|fp)
(K − 1)

)
(2)

Rc is positive when the P (yc|fp) is larger than 1/(K). In
other words, the class label whose probability is larger than
the random guessing probability receives a positive rele-
vance score.

With the relevance score of each target label Rc, c =
1 . . .K, standard LRP is applicable to backpropagate Rc
through the classifier to generate the explanations. We
rely on two established LRP backpropagation mechanisms
here, the ε-rule and the αβ-rule (Bach et al., 2015). Con-
sider the forward pass from layer l to l + 1: yl+1

j =∑
i wijz

l
i+bj , z

l+1
j = f(yl+1

j ) where i and j are the indices
of neurons in lth and l+1th layer, f(·) is an activation func-
tion. Let R(·) denote the relevance of a neuron and Ri←j
denote the relevance attribution from zl+1

j to zli.

ε-rule: Ri←j = R(zl+1
j )

zliwij

yl+1
j +εsign(yl+1

j )
. ε is a small posi-

tive number and εsign(yl+1
j ) guarantees safe division.

αβ-rule:Ri←j = R(zl+1
j )(α

(zliwij)
+

(yl+1
j )+

− (α − 1)
(zliwij)

−

(yl+1
j )−

)

where (yl+1
j )+ = max(yl+1

j , 0) and α > 1 controls the
ratio of positive evidence to backpropagate.

The relevance of zli is the summation of the relevance attri-
bution of it, R(zli) =

∑
j Ri←j . We adopt the ε-rule and

αβ-rule for linear layer and convolutional layer respectively
to obtain R(fp). R(fp) is normalized with its maximal
absolute value.

Step3: LRP-weighted features. To emphasize features
which are more relevant to the prediction and downscale
the less relevant ones, we define the LRP weights and the
LRP-weighted features as

wlrp = 1 +R(fp) (3)
fp−lrp = wlrp � fp (4)

Note that R(fp) ∈ [−1, 1] after normalization, thus wlrp
magnifies the features with positive relevance scores and

1For Euclidean distance, we need to use the opposite number
of the distance to replace the similarity metric.
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Table 1. The correspondence of RelationNet and Cross attention
network to the framework in Figure 2.

feature processing classifier
RN pairwise concatenation relation module

CAN cross attention module cosine similarity

downscales those with negative relevance scores. The maxi-
mal feature scaling after weighting with wlrp is 2.

Step4: Finally, we forward the LRP-weighted features to
the classifier to generate the explanation-guided predictions
plrp. The objective function merges both the model predic-
tion p and the explanation-guided prediction plrp.

L = ξLce(y, p) + λLce(y, plrp) (5)

where Lce is the cross entropy loss. ξ and λ are positive
scalars that control how much information from p and plrp
are used. In our experiment, ξ and λ are empirically adjusted
for the different FSC models.

4. Experiments
We evaluate the proposed explanation-guided training on
RelationNet(RN)(Sung et al., 2018) and one of the state-of-
the-art models, cross attention network(CAN) (Hou et al.,
2019). The correspondence of the two FSC models to the
framework in Figure 2 is summarized in Table 1. We will
prove that explanation-guided training improves the predic-
tion performance of both RN and CAN on 4 cross-domain
test sets.

Moreover, we also combine explanation-guided training
with another approach, the learning to learn feature-wise
transformation (LFT)(Tseng et al., 2020). We show that
explanation-guided training is compatible with LFT and the
combination further improves the performance.

4.1. Dataset and model preparation

Five datasets are used in our experiment including miniIm-
agenet(Ravi & Larochelle, 2016), CUB(Wah et al., 2011),
Cars(Krause et al., 2013), Places(Zhou et al., 2017), and
Plantae(Van Horn et al., 2018), which are introduced in
(Tseng et al., 2020). Each dataset consists of train/val/test
splits. We choose miniImagenet as the Dseen and train the
RN and CAN models on the training set, validate both mod-
els on the validation set of miniImagenet, and adopt the test
sets of the other four datasets for testing.

We use Resnet10 and Resnet12(He et al., 2016) as the image
encoder for both RN and CAN models respectively. The two
models are trained under 5-way 5-shot and 5-way 1-shot
settings. For explanation-guided training, we set ξ = 1, λ =
0.5 for RN 5-way 5-shot setting and ξ = 1, λ = 1 for RN

5-way 1-shot setting. CAN model employs cosine similarity
as the classifier, thus we set β in eq(1) as 7, the same as
the original model and ξ = 0, λ = 1 for eq(5). The LRP
parameters are α = 1, ε = 0.001 for all the experiments.

We follow the same implementation details (Tseng et al.,
2020)2 and (Hou et al., 2019)3 to train the RelationNet and
CAN model. At test time, we evaluate the performance over
2000 randomly sampled episodes, with 16 query images per
episode.

4.2. Evaluation for explanation-guided training on
cross-domain setting

In this section, we evaluate the performance of RN and CAN
models trained without and with explanation-guided train-
ing on CD-FSC tasks. For more comprehensive analyses,
we also implement the Transductive inference proposed
by (Hou et al., 2019). Transductive inference iteratively
augments the support set using the confidently classified
query images during the test phase. Specifically, we first
predict the label of query images with the trained model;
secondly, we choose the query images with higher predicted
scores as the candidate images. The candidate images and
their predicted label are augmented to the support set. This
is an iterative process. In our experiment, we implement the
transductive operation for two iterations with 35 candidates
for the first iteration and 70 for the second which is the same
strategy as (Hou et al., 2019).

Table 2 summarizes the accuracy of the unmodified RN
and CAN models and the same models with explanation-
guided training. We can observe a consistent improvement
after implementing explanation-guided training. The results
are also competitive with the recent work on LFT (Tseng
et al., 2020) which learns a noise distribution by adding
feature-wise transformation layers to the image encoder
while explanation-guided training does not introduce more
training parameters. To show that our approach exploits a
different mechanism to improve performance, we combine
the LFT and our explanation-guided training.

4.3. Collaboration of explanation-guided training and
feature-wise transformation

To compare and to combine our idea with the LFT method,
we apply the explanation-guided training to the multiple
domain experiment as (Tseng et al., 2020). The LFT model
is trained using the pseudo-seen domain and pseudo-unseen
domains. In our experiment, the miniImagenet is the pseudo-
seen domain. Three of the other four datasets are the pseudo-
unseen domains and the model is tested on the last domain.
The pseudo-unseen domains are used to train the feature-

2https://github.com/hytseng0509/CrossDomainFewShot
3https://github.com/blue-blue272/fewshot-CAN
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Table 2. Evaluation of explanation-guided training on cross-domain datasets using RN and CAN. We report the average accuracy of over
2000 episodes with 95% confidence intervals. The models are trained on the miniImagenet training set and tested on the test set of various
domains. LRP- means explanation-guided training using LRP. T indicates transductive inference.

miniImagenet 1-shot 1-shot-T 5-shot 5-shot-T
RN 58.31±0.47% 61.52±0.58% 72.72±0.37% 73.64±0.40%

LRP-RN 60.06±0.47% 62.65±0.56% 73.63±0.37% 74.67±0.39%
CAN 64.66±0.48% 67.74±0.54% 79.61±0.33% 80.34±0.35%

LRP-CAN 64.65±0.46% 69.10±0.53% 80.89±0.32% 82.56±0.33%
mini-CUB 1-shot 1-shot-T 5-shot 5-shot-T

RN 41.98±0.41% 42.52±0.48% 58.75±0.36% 59.10±0.42%
LRP-RN 42.44±0.41% 42.88±0.48% 59.30±0.40% 59.22±0.42%

CAN 44.91±0.41% 46.63±0.50% 63.09±0.39% 62.09±0.43%
LRP-CAN 46.23±0.42% 48.35±0.52% 66.58±0.39% 66.57±0.43%
mini-Cars 1-shot 1-shot-T 5-shot 5-shot-T

RN 29.32±0.34% 28.56±0.37% 38.91±0.38% 37.45±0.40%
LRP-RN 29.65±0.33% 29.61±0.37% 39.19±0.38% 38.31±0.39%

CAN 31.44±0.35% 30.06±0.42% 41.46±0.37% 40.17±0.40%
LRP-CAN 32.66±0.46% 32.35±0.42% 43.86±0.38% 42.57±0.42%
mini-Places 1-shot 1-shot-T 5-shot 5-shot-T

RN 50.87±0.48% 53.63±0.58% 66.47±0.41% 67.43±0.43%
LRP-RN 50.59±0.46% 53.07±0.57% 66.90±0.40% 68.25±0.43%

CAN 56.90±0.49% 60.70±0.58% 72.94±0.38% 74.44±0.41%
LRP-CAN 56.96±0.48% 61.60±0.58% 74.91±0.37% 76.90±0.39%

mini-Plantae 1-shot 1-shot-T 5-shot 5-shot-T
RN 33.53±0.36% 33.69±0.42% 47.40±0.36% 46.51±0.40%

LRP-RN 34.80±0.37% 34.54±0.42% 48.09±0.35% 47.67±0.39%
CAN 36.57±0.37% 36.69±0.42% 50.45±0.36% 48.67±0.40%

LRP-CAN 38.23±0.45% 38.48±0.43% 53.25±0.36% 51.63±0.41%

Table 3. The results of multiple domains experiment under the 5-way 5-shot setting. We report the average accuracy of over 2000 episodes
with 95% confidence intervals. FT and LFT indicate the feature-wise transformation layer with fixed or trainable parameters. LRP-
means explanation-guided training using LRP. LFT-LRP is the combination of LFT and explanation-guided training.

Cars Places CUB Plantae
RN 40.01±0.37% 64.56±0.40% 62.50±0.39% 47.58±0.37%

FT-RN 40.52±0.40% 64.92±0.40% 61.87±0.39% 48.54±0.38%
LRP-RN 41.05±0.37% 66.08±0.40% 62.71±0.39% 48.78±0.37%
LFT-RN 41.51±0.39% 65.35±0.40% 64.11±0.39% 49.29±0.38%

LFT-LRP-RN 42.38±0.40% 66.23±0.40% 64.62±0.39% 50.50±0.39%

wise transformation layer and the pseudo-seen domain is
used to update the other trainable parameters of the model.
If the parameters of the feature-wise transformation layer
are fixed, we will get the FT method that adds the noise with
a fixed distribution on certain intermediate layers.

The performance of the standard RN, the FT and LFT
methods, explanation-guided training, and its combination
with LFT are shown in Table 3. These models are trained
with the same random seed, learning rate, optimizer, and
datasets. The combination of our explanation-guided train-
ing and LFT(LFT-LRP-RN) achieves the best accuracy.
Comparing the results of FT-RN and LRP-RN, we can see
explanation-guided training is even better without introduc-
ing more trainable parameters to the model.

We remark that the improvement observed when combining
LRP with LFT shows that both optimize the model from
different angles. This demonstrates the independence of

both approaches as well as their strength.

4.4. Qualitative results of LRP explanation for FSC
models

The above experiments have demonstrated that explanation-
guided training effectively improves the performances of
FSC models and successfully reduces the domain gap. We
leverage on the LRP explanation of the intermediate feature
map to re-weight the same feature map. In this section,
we visualize the LRP explanation of the input images as
heatmaps. From the LRP heatmaps, we can easily observe
which parts of the image are used by the model to make the
predictions, in other words, what features have the model
learned to differentiate classes. To our best knowledge, this
is the first attempt to explain the FSC models though many
existing explanation methods are in principle applicable.

Figure 1 has already shown some heatmaps of RelationNet.
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Figure 3. LRP heatmaps and the attention heatmaps of the CAN model for one episode. The model is trained under the 5-way 1-shot
setting. The first row shows the support images of each class. For each query image, we illustrate the attention heatmaps and the LRP
heatmaps of both the support images and the query images with 5 target labels.

We further illustrate the LRP explanation of the CAN model
in the 5-way 1-shot setting. Since there is only one training
sample for each class, we also show the LRP heatmap and
the attention heatmap for the support images.

In Figure 3, we can see the LRP heatmaps and atten-
tion heatmaps of each label for the query image. For the
query image that is correctly predicted as school bus, LRP
heatmaps under school bus highlight the relevant structures
of the bus. Specifically, the LRP heatmap can capture the
features of the window frames of the bus. On the other hand,
the LRP heatmaps of other wrong labels show more negative
evidence, however, we can still find some interesting resem-
blance between the query image and the explained label.
For example, in Figure 1, when we explain the label lion for
the African hunting dog, the LRP heatmap highlights the
legs of the African hunting dog and when we explain the
label cuirass for the lion, the LRP heatmap emphasizes the
round contour that resembles cuirass.

Moreover, LRP heatmaps provide some evidence for us to
analyze the reasons why the model makes wrong predic-
tions, such as the crate that is wrongly predicted as school
bus in Figure 3. The support image school bus contains the
window frames with latticed shape which is also an obvious
feature of the crate class, usually shown as a pile of rectan-
gles. These features are highlighted by LRP heatmaps and
we can speculate that the model perhaps makes the wrong
prediction according to the similar features between the two
classes.

5. Conclusion
This paper tailors LRP to explain few-shot classification
models and propose a novel approach to improve FSC mod-
els, explanation-guided training. We find two points note-
worthy. Firstly, explanation-guided training successfully
addresses the domain shift problem in few-shot learning,
as demonstrated in the cross-domain few shot tasks. Sec-
ondly , when combining explanation-guided training with
feature-wise transformation, the model performance is fur-
ther improved, demonstrating that these two approaches
optimize the model in a non-overlapping manner. We con-
clude that the explanations of the few-shot classification can
not only provide intuitive and informative visualizations but
can also be leveraged to improve the models.
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