
What Did You Think Would Happen? Explaining Agent Behaviour through
Intended Outcomes

Herman Yau 1 Chris Russell 2 Simon Hadfield 1

Abstract
We present a novel form of explanation for Rein-
forcement Learning (RL), based around the no-
tion of intended outcome. This describes what
outcome an agent is trying to achieve by its ac-
tions. Given this definition, we provide a simple
proof that general methods for post-hoc explana-
tions of this nature are impossible in traditional
reinforcement learning. Rather, the information
needed for the explanations must be collected in
conjunction with training the agent. We provide
approaches designed to do this for several variants
of Q-function approximation and prove consis-
tency between the explanations and the Q-values
learned. We demonstrate our method on multiple
reinforcement learning problems.

1. Introduction
Explaining the behaviour of machine learning algorithms or
AI remains a key challenge in machine learning. With the
guidelines of the European Union’s General Data Protection
Regulation (GDPR) (EUd, 2018) calling for explainable
AI, it has come to the research community’s attention that
it is vital to establish a clear understanding of black-box
models. Despite significant research on explaining the
behaviour of supervised machine-learning algorithms,
it remains unclear exactly what should constitute an
explanation for reinforcement learning. Current work in
explainable reinforcement learning approaches it much like
explaining a supervised classifier (Mott et al., 2019), and the
explanations can highlight what in the current environment
drives an agent to take an action, but not what the agent
expects the action to achieve. Frequently, the consequences
of the agent’s actions are not immediate and a chain of

1Centre for Vision, Speech and Signal Processing, University of
Surrey, Guildford, United Kingdom 2Amazon, Tübingen, Baden-
Württemberg, Germany. Part of this work was done while at the
Alan Turing Institute and University of Surrey. Correspondence to:
Herman Yau <h.yau@surrey.ac.uk>.

Workshop on Extending Explainable AI Beyond Deep Models and
Classifiers, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

many decisions all contribute to a single outcome. This
paper addresses this problem by asking what chain of events
the agent intended to happen as a result of a particular
action choice. The importance of such explanations based
around intended outcome in day to day life is well-known
in psychology with Malle (2001) estimating that around
80% of these day to day explanations are intent-based.
While the notion of intent makes little sense in the context
of supervised classification, it is directly applicable to agent
based reasoning, and it is perhaps surprising that we are the
first work in explainable RL to directly address this.

Despite recent progress in reinforcement learning, few
works have focused on its interpretability or explainability.
Annasamy & Sycara (2019) proposed i-DQN, an architec-
turally similar model to the vanilla DQN model (Mnih et al.,
2015) that introduced a key-value store to concurrently learn
latent state representation, and Q-value mapping for intu-
itive visualisations by means of key clustering, saliency and
attention maps. Mott et al. (2019) takes this idea further, rep-
resenting the key-value store as recurrent attention model to
produce a normalised soft-attention map, this made it pos-
sible to track the steps an agent takes to solve a task. Both
methods focused on identifying components of the world
that drive the agent to take a particular action, rather than
identifying the agents expected outcomes. As these works
exploit visual attention they are only directly applicable to
image-based RL problems.

Methods have been proposed to extract global policy sum-
maries, i.e. compressed approximations of the underlying
policy function. Verma et al. (2018) proposed PIRL, which
syntactically expresses policy with a high-level program-
ming language. Topin & Veloso (2019) modelled policy
as a Markov chain over abstract states giving rise to high-
level explanations. Our approach gives a local description
that says given a current state/action choice, what are the
expected future states.

We present a novel yet simple addition to the standard RL
framework which allows us to obtain a projection of possible
future trajectories given a current observation and proposed
action allowing for post-hoc interpretation of the agent’s
intention from based on its behavioural policy.



What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

s0

s1

r(s0, a0) = 0

s2

r(s0, a1) = 0

s3

r(s1, a0) = 2

s4

r(s1, a1) = 1

s5

r(s2, a0) = 1

s6

r(s2, a1) = 2

a0

a1

a0

a1

a0

a1

Figure 1: A simple MDP to illustrate state ambiguity in
value iteration methods (see Section 2.1).

2. Value Function Decomposition
To understand why an RL agent prefers one action over
another, we want to infer the agent’s implicit estimate of
p(st+n|st, at,⇡) for all n > 0 which reveals the future
states used in estimating Q-values.

We do not try to understand the internal computations that
led our agent to map a particular Q-value against a particular
action. Instead we wish to know the expected future states
that leads an agent to decide that one action in the current
state would be preferable to another action.

We prove that post-hoc explanations of the form we are
interested in can not be recovered from an existing agent
trained using a traditional Q-learning approach; we do this
by showing that the inverse problem of recovering expected
future states from a Q-function is fundamentally ill-posed.
Note that Q-learning is used only as an example. The same
reasoning can be applied to any value based reinforcement
learning algorithm. We then propose a new algorithm that
can be run alongside with an existing learning process which
lets us obtain such explanations, without affecting what is
learnt .

2.1. Value Ambiguity

The Q-value function is a convenient tool for producing
a loss to guide the training of an agent. However, it acts
as a bottleneck on the information exposed to both users
and developers. It quantifies the “goodness” (expectation of
discounted rewards) for executing a given action a in state s,
without explicitly capturing how or why such a conclusion is
reached. Furthermore, not only is the required information
not directly available, but we also cannot in general, infer it
indirectly from the Q-value.

Theorem 1. Given any MDP where multiple optimal poli-
cies ⇡⇤ exist, it is not possible to produce a post-hoc inter-
pretation due to value ambiguity.

The proof follows immediately by contradiction. Consider

the undiscounted, deterministic chain of MDP in Figure 1,
where an episode starts at s0. Each state has 2 actions: a0
moves to the upper node, a1 moves to the lower node. All
rewards are 0 except for reaching the end of the chain, where
r(s1, a0) = r(s2, a1) = 2, r(s1, a1) = r(s2, a0) = 1. We
assume a tabular Q-learning agent trained using the ✏-greedy
algorithm (with ties broken arbitrarily).

While the value functions are updated and eventually con-
verge to optimality, there is ambiguity while learning takes
place. Clearly, Q⇤(s0, a0) = Q⇤(s0, a1) = 2 and there
are two optimal trajectories ⌧1t:T = (s0, a0, 0, s1, a0, 2) or
⌧2t:T = (s1, a1, 0, s2, a1, 2) relating to two separate policies
⇡⇤.

Clearly, in this situation it is not possible to examine a single
value estimate V ⇡(s0) and infer which trajectory the agent
expects to follow. Therefore we are unable to generate a
sufficient post-hoc interpretation to reason about the agent’s
intention in this situation.

Although this is a simple example, it immediately rules
out approaches to generating explanations by training an
ML method to predict to future behaviour of an agent on
the basis of the behaviour of previous agents with similar
Q-values. The problem illustrated by our counterexample
is exacerbated if we work with an extended chain of con-
ceptually similar MDP, as s3 and s6 could both contribute
to the estimation of the same Q-value. Similarly, the same
situation is observed for Q⇤(s1, a0) and Q⇤(s2, a1). More
specifically, it is impossible to answer the contrastive ques-
tion of “on what basis the agent learns about the quality of
this state and/or state-action pair”.

2.2. Explaining Tabular Reinforcement Learning

We describe how to augment standard RL learning methods
with a simple additional process that allows us to learn a
map of discounted expected states H (which we refer to
as the belief map) concurrently with learning the Q-value
function.

The intuition behind our approach is straightforward. While
Q-value based methods estimate the expected future re-
ward summed over all discounted expected states, our ap-
proach preserves additional information, and captures the
discounted expected state at the same time. By choosing
update rules for H to match the update equations of (1)
we guarantee consistency between the Q-values and the
expected future states. Subsection 2.3 proves that these ex-
pected states are consistent with the learnt Q-values. Below
we present three variations of value function decomposition.
For simplicity, we assume the methods are off-policy, but
our approach is directly applicable to on-policy methods.

We define H(s, a) 2 RS⇥A as the expected discounted
sum of future state visitations in a deterministic MDP which



What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

starts by executing action a from state s. As a notational con-
venience we use 1s,a 2 RS⇥A to denote a binary indicator
function 1 at position s, a and 0 elsewhere.

Q-Learning Every time the Q-value estimator is updated
during learning, we update the corresponding entries of H
to maintain consistency. This is a direct adaption of the
standard Bellman equation to H, that gives the update rule:

H(s, a) H(s, a) + ↵
�
1s,a

+ �H(st+1, argmax
a2A

Q(st+1, a))�H(s, a)
�

(1)

We update all state-action pairs in trajectory ⌧ .

Monte Carlo Control Adapting the update to Monte
Carlo control methods is straightforward. We simply re-
place 1s,a with a vector sum of discounted state visitations:

H(s, a) H(s, a) + ↵

 
TX

t=t0

�t1st,at �H(s, a)

!
(2)

2.3. The Consistency of Belief Maps

We say that a belief map is consistent with a Q-table given
reward map R, if the inner product of the belief map of every
state-action pair with the reward map gives the Q-value for
the same state-action pair. More formally, we assume the
current reward is a deterministic function of the current
state-action pair, we define R 2 RS⇥A as a map of rewards
for every state-action pair in the MDP, and say that if

vec(H(s, a))>vec(R) = Q(s, a) 8a 2 A, s 2 S (3)

then the belief map H is consistent with Q.

Theorem 2. Assuming that H and Q are zero-initialized,
then H and Q will be consistent for all iterations of the
algorithm.

Proof. Proof follows by induction on i the iteration of the
learning algorithm. Base case (i = 0): At initialization
H(s, a) = 0 and Q(s, a) = 0 for all possible s and a and
the statement is trivially true.

Inductive step (Monte Carlo): We consider iteration i
where we know that the theorem holds for time i� 1. We
use Hi to indicate the state of H at iteration i, and Qi the

state of Q at iteration i

vec(Hi(s, a))
>vec(R)

= vec((1� ↵)Hi�1(s, a) + ↵
X

t=t0

rt�t1st,at)
>vec(R)

= (1� ↵)Qi�1(s, a) + ↵vec

 
TX

t=t0

�t1st,at

!>

vec(R)

= (1� ↵)Qi�1(s, a) + ↵
TX

t=t0

�trt

= Qi(s, a) (4)

Inductive step (Q-learning):We consider time i where we
know that the theorem holds for time i� 1. We write mt =
argmax

a2A
Qi�1(st, a)

vec(Hi(s, a))
>vec(R)

= vec((1� ↵)Hi�1(s, a)

+ ↵ (1s,a + �Hi�1(st+1,mt+1)))
>vec(R)

= (1� ↵)Qi�1(s, a)

+ ↵vec (1s,a + �Hi�1(st+1,mt+1))
> vec(R)

= (1� ↵)Qi�1(s, a) + ↵Qi�1(st+1,mt+1)

= Qi(s, a). (5)

as required.

2.4. Deep Q-Learning

Much like Deep Q-learning, function approximation can be
used for estimating H. For H parametrised by ✓h and given
agent policy ⇡✓, the loss function is:

Lh(✓hi) =E(s,a,1,st+1)[(1s,a

+ �H(s, argmax
a2A

Q(st+1, a; ✓i); ✓
�
hi
)

�H(s, a; ✓hi))] (6)

then the gradient update is:

✓hi+1 = ✓hi + ↵r✓hL(✓hi). (7)

Here H(s, a) is an unnormalised density estimation. Where
the state and action space is discrete this can be in the form
of a vector output, and where at least one is continuous using
techniques such as (De Cao et al., 2019) or approximately
by pre-quantizing the state space using standard clustering
techniques.

The mathematical guarantees of consistency from the pre-
vious section do not hold for deep Q-learning, with the
random initialisation of the networks meaning that it fails in
the base case. However, just as an appropriately set up deep



What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

(a) Belief map for sticking (b) Belief map for hitting

(c) Reward belief for sticking (d) Reward belief for hitting

Figure 2: Visualisations of belief maps and reward incurred
by actions when player sum = 10, dealer card = 7 with
no usable ace. Unreachable player states are ignored for
conciseness, i.e. Player sum < 4 and sum > 21.

Q-learning algorithm will converge to an empiric minimiser,
an appropriately setup H-learner will also converge to min-
imise Equation (6). We evaluate the deep variants of our
approach in the experimental section, and show even with-
out theoretical guarantees, it performs effectively, providing
insight into what has been learnt by our agents.

3. Experiments and Discussions
We evaluate our approach on three standard environments
using OpenAI Gym (Brockman et al., 2016) - Blackjack,
Cartpole (Barto et al., 1990) and Taxi (Dietterich, 2000).
Each environments poses unique challenges. For each task
we briefly describe our assumptions and key experiment
parameters. We extract an intuitive post-hoc interpretation
of the RL agent’s intention solely from the belief maps.
We verify the correctness of our implementation in each
environment using theorem 2, and confirm that Equation (3)
holds.

We find minimal differences applying our technique to Tem-
poral Difference and Monte Carlo approaches. For concise-
ness, we report here the findings from TD and the MC re-
sults will be provided as a supplementary report. RL agents
always use an ✏-greedy algorithm during training.

Blackjack We model a simplified game of blackjack and
assume (1) the shoe consists of infinite cards, (2) the only

(a) Belief map for Q-Learning

(b) True trajectory for Q-learning

(c) Belief map for deep Q-Learning

(d) True trajectory for deep Q-learning

Figure 3: Belief maps and trajectories visualisations for
cartpole simulation.

moves allowed are “hit” and “stick” and (3) we do not
account for blackjacks.

The system dynamics are non-deterministic as the card
drawn on each hit is random, and environment the reward
is stochastic due to the uncertainty in the dealer’s hand. To
make the reward a deterministic function of the stochastic
state we create five additional states - hit and bust, stuck and
won, stuck and drew, stuck and lost and hit only. The agent
is trained with ↵ = 0.1, � = 1 for 500k episodes.

Figure 7 shows belief maps for each action and the corre-
sponding incurred rewards when the player’s hand has a
sum of 10, and the dealer shows 7. There is a single point in
the state space that shows a high probability in both figure
2a and 2b. This point corresponds to the current starting
state, which all future trajectories must pass through. Figure
2b shows probable future events when the player hits. We
observe the intention of the agent from the belief map, that
it continues to hit until a high enough sum is obtained. This
explains why lower values have lower density, as there are
fewer paths to reach these states. The second peak at 20 is
expected given that all face cards have a value of 10.

Cartpole (Barto et al., 1990) is a classic continuous
control problem with a 4-tuple continuous state space
hx, ẋ, ✓, ✓̇i : cart position, cart velocity, pole angle and pole
velocity, and a discrete action space consisting of 2 actions:
left and right. For a like-with-like comparison across stan-
dard learning approaches, we discretizing the state-space
into bins of (3, 3, 6, 3).



What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

We investigate agent intention in cartpole learnt from vanilla
Q-learning and DQN. In both methods, we train the agent
until the agent is reasonably stable. The vanilla Q-learning
agent is trained with learning rate ↵ = 0.1 and � = 1. The
DQN agent is trained using Adam (Kingma & Ba, 2014)
with gradient clipping at [�1, 1] and ↵ = 0.0001, � = 1,
while the belief map is trained by a deep network which we
refer to as a Deep Belief Network (DBN) using the same
hyperparameters.

Figure 3 shows the belief map versus the actual trajectory
of the episode produced by the agent. The belief maps show
that the agent identified two key states to reach in order to
achieve stability. The high belief in both states indicates
the agent’s intention to oscillate between these two states.
This is reflected by the historic trajectory map where the
same pattern is seen indicating that the agent is successfully
execute this plan. For DQN, the belief map is noticeably
less sharp. Nevertheless it closely resembles the trajectory
that is achieved by the DQN agent, and reveals the agent’s
intention.

Taxi (Dietterich, 2000) is a challenging environment
where an agent must first navigate from a randomized
start point, around obstacles, to collect a passenger from
a random location, then pick up that passenger and navigate
to a randomized destination. We investigate agent intention
learnt by Q-learning and DQN. The Q-learning agent is
trained with ↵ = 0.4, � = 1 using a 4-tuple state represen-
tation of car x and y location, passenger location and des-
tination. DQN used ↵ = 0.0001, � = 1 for 100k episodes.

Figure 4 and Figure 5 shows visualisations of the RL agents’
belief maps at several steps along a trajectory. For both
methods we can intuitively reason about the intentions of
the agents. These intentions become clearer over time, as the
multiple potential routes (including the outward and return
journey) which are overlaid, collapse to the single shortest
path towards the goal.

It is interesting to note that the intention of the DQN agent
appears much less diffuse than those of the Q-learning agent
over long periods of time. This reflects the increased effec-
tiveness of the DQN agent in solving the task. However, we
can also note that the DQN agent appears to be exhibiting a
bias towards returning to the top left corner position even
though the goal is in the bottom left. Having access to this
type of insight would be useful in debugging and identifying
problems in learning.

Contrastive explanations Figure 6 demonstrates the ca-
pability of our method to extract contrastive explanations.
To generate these explanations, we scaled the belief map
to [0, 1] and weight images of non-zero states accordingly.
Figure 6a reveals the value ambiguity problem stated pre-

viously, in a real example. By contrasting the intentions
of the best and second best actions we can observe two
equally good policies were produced. Such explanation is
not possible with vanilla Q-learning which only has access
to Q-values. Similarly in Figure 6b, despite the subopti-
mality of the second best action, we can identify that the
agent is able to recover by bouncing back to the original
position immediately then following the same route to the
destination. In both cases we can reason about the agent’s
intention: that it is indeed solving the assigned task. We also
identify a failure case in Figure 6c where taking the subopti-
mal action would cause the car to be stuck in the same state.
In DQN, even though the mathematical guarantee is lost,
we can nevertheless extract an approximation of the agent’s
intention.

4. Conclusions and Future Work
We have proposed a novel approach for explaining what
outcomes are implicitly expected by reinforcement learn-
ing agents. We proposed a meaningful definition of inten-
tion for RL agents and proved no post-hoc method could
generate such explanations. We proposed modifications of
standard learning methods that generate such explanations
for existing RL approaches, and proved consistency of our
approaches with tabular methods. We further showed how it
can be extended to deep RL techniques and demonstrated its
effectiveness on multiple reinforcement learning problems.

A noticeable limitation of our method is that it is best-suited
for problems where tabular reinforcement learning works
well (i.e. low-dimensional and easily visualisable). Just as
deep learning substantially increased the applicability of
reinforcement learning it is interesting to ask how it could
increase the applicability of our approach. One potential
answer lies in the use of concept activation vectors(Kim
et al., 2017), which allows for shared concepts between hu-
mans and machine learning algorithms. For example, if a
concept was trained to recognise a pinned piece in chess our
approach would be able to explain a move by saying that it
will give rise to a pinned knight later. Importantly, given a set
of concepts F defined over the state space S , it would be pos-
sible to train the belief map over the low-dimensional space
F (S), rather than S , substantially improving the scalability
of our approach. As such, while our approach is directly
applicable to problems with easily mappable state-spaces,
it also lays the mathematical foundations for explainable
agents in more complex systems.

Acknowledgements

This work was partially supported by the UK Engineering
and Physical Sciences Research Council (EPSRC), Omidyar
Group and The Alan Turing Institute under grant agreements
EP/S035761/1 and EP/N510129/1.



What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

Figure 4: Varying intention of the Q-learning agent in the Taxi environment (Dietterich, 2000). Each image represents the
belief map at one point along a trajectory, with time advancing from left to right. Colour intensity denotes the confidence
that the agent will visit a state. Yellow indicates the passenger is not present, whereas green means they are. ‘R’, ‘G’, ‘Y’,
‘B’, each represents a possible location of the passenger and the destination. Blue text indicates the location of the passenger
if they are not in the car, and red text denotes destination.

Figure 5: How the expected outcomes of the DQN agent vary in the Taxi environment (Dietterich, 2000)

(a) a0: move east, a1: move south. Q(s, a0) = 7.7147, Q(s, a1) = 7.0777.

(b) a0: move south, a1: move east. Q(s, a0) = 11.87, Q(s, a1) = 7.6599.

(c) a0: move north, a1: move east. Q(s, a0) = �2.3744, Q(s, a1) = �5.204.

Figure 6: Contrastive explanations of taxi tabular Q-learning agent during the episode in Figure 4. Here we denote a0 as the
best action, a1 as the second best action. Current state is highlighted by the strong hue of the car. From left to right we have:
(1) H(s, a0), (2), H(s, a1), (3) min(0,H(s, a1)�H(s, a0)), (4) min(0,H(s, a0)�H(s, a1)), (5) the intersection of the
two expected outcomes, given by min(H(s, a0),H(s, a1)).



What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

References
2018 reform of eu data protection rules, 2018. URL
https://ec.europa.eu/commission/
sites/beta-political/files/
data-protection-factsheet-changes_
en.pdf.

Annasamy, R. M. and Sycara, K. Towards Better Inter-
pretability in Deep Q-Networks. Technical report, 2019.
URL www.aaai.org.

Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike
Adaptive Elements That Can Solve Difficult Learning
Control Problems, pp. 81–93. IEEE Press, 1990. ISBN
0818620153.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

De Cao, N., Titov, I., and Aziz, W. Block neural autoregres-
sive flow. arXiv preprint arXiv:1904.04676, 2019.

Dietterich, T. G. Hierarchical reinforcement learning with
the maxq value function decomposition. J. Artif. Int. Res.,
13(1):227–303, November 2000. ISSN 1076-9757.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,
Viegas, F., and Sayres, R. Interpretability beyond feature
attribution: Quantitative testing with concept activation
vectors (tcav). arXiv preprint arXiv:1711.11279, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2014.

Malle, B. F. Folk explanations of intentional action. Foun-
dations of social cognition, 2001.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level con-
trol through deep reinforcement learning. Nature, 518
(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D., and
Rezende, D. J. Towards Interpretable Reinforcement
Learning Using Attention Augmented Agents. Technical
report, 2019.

Topin, N. and Veloso, M. Generation of Policy-Level Ex-
planations for Reinforcement Learning. Proceedings of
the AAAI Conference on Artificial Intelligence, 33:2514–
2521, 2019. ISSN 2159-5399. doi: 10.1609/aaai.v33i01.
33012514. URL www.aaai.org.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaud-
huri, S. Programmatically interpretable reinforcement
learning. In Dy, J. G. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 5052–5061. PMLR,
2018. URL http://proceedings.mlr.press/
v80/verma18a.html.

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
www.aaai.org
http://dx.doi.org/10.1038/nature14236
www.aaai.org
http://proceedings.mlr.press/v80/verma18a.html
http://proceedings.mlr.press/v80/verma18a.html


What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

A. Agent Description
Blackjack In both Monte Carlo control and Q-learning
we share the same training settings. We set the learning rate
↵ = 0.1, discount factor � = 1. We set an initial exploration
probability ✏ = 1 which is exponentially decreased to ✏ =
0.05 with a decay rate of 0.9999 throughout the training.

Cartpole Similar to blackjack, we share the same train-
ing settings in cartpole. We set learning rate ↵ = 0.1 and
discount factor � = 1. Episode terminates when the length
of the episode reaches 200 timesteps. We initially set ex-
ploration probability ✏ = 1 which is linearly decreased to
✏ = 0.1 throughout the first 500 episodes.

In DQN training, we use Adam(Kingma & Ba, 2014) opti-
mizer with ✏ = 1e� 8, exponential decays �1 = 0.9,�2 =
0.999. The learning rate is ↵ = 0.0001. We use Huber loss
with discount factor � = 1. We clip gradients to be in the
range of [�1, 1]. For each learning iteration, we batch 16
experience together for optimisation. We initially set ex-
ploration probability ✏ = 1 which is linearly decreased to
✏ = 0.1 throughout the first 500 episodes. Full details of the
neural network architectures can be found in Table 1 and 2.

Layer Type Input Size
input N/A N/A 4
fc1 MLP input 128
fc2 MLP fc1 512
output MLP fc2 2

Table 1: DQN neural network architecture

Layer Type Input Size
input N/A N/A 162
fc1 MLP input 512
fc2 MLP fc1 1024
fc3 MLP fc2 2048
output MLP fc3 2*2*162

Table 2: DBN neural network architecture. Output is re-
shaped to RA⇥S⇥A before return.

Taxi We first describe the training details for Q-learning.
We set learning rate ↵ = 0.4 and discount factor � = 0.9.
Episode terminates agent completes the episode or reach
a threshold of 200 timesteps. We initially set exploration
probability ✏ = 1 which is linearly decreased to ✏ = 0.1 in
the first 250 episodes.

In DQN training, we use Adam(Kingma & Ba, 2014) opti-
mizer with ✏ = 1e� 8, exponential decays �1 = 0.9,�2 =
0.999. The learning rate is ↵ = 0.0001. We use Huber loss
with discount factor � = 1. We clip gradients to be in the

range of [�1, 1]. For each learning iteration, we batch 16
experience together for optimisation. We initially set ex-
ploration probability ✏ = 1 which is linearly decreased
to ✏ = 0.1 in the first 250 episodes. In order to speed up
training of DBN, we made a small modification by splitting
belief update and action into two inputs: belief update is a
binary indicator function 1 at position s, and action is con-
verted into one-hot encoding before being fed into the neural
network. Full details of the neural network architectures can
be found in Table 3 and 4.

Layer Type Input Size
input N/A N/A 4
fc1 MLP input 500
fc2 MLP fc1 2000
output MLP fc2 6

Table 3: DQN neural network architecture

Layer Type Input Size
input_belief N/A N/A 500
input_action N/A N/A 6
belief_stream MLP input_belief 1024
action_stream MLP input_action 128
concat N/A input_belief, input_action 1024+128 = 1152
fc3 MLP concat 2048
output MLP fc3 500

Table 4: DBN neural network architecture. Output is re-
shaped to RA⇥S⇥A before return.

B. Further Results
Suppose we have the best action a0 and second best action
a1 at state s, we can compute a contrastive explanation G
by subtracting the belief of a0 against a1:

G(s, a0, a1) = H(s, a0)�H(s, a1) (8)

Since H(s, a) is a decomposition of Q(s, a), the subtraction
will tell us which future states constitute the overall good-
ness of a0 over a1 in s. We apply equation 8 to generate
contrastive explanations below.

Blackjack For conciseness, the visualisations of black-
jack have been trimmed to only show reachable states. We
verify in Figure 9 and Figure 8 that we can recover the Q-
table from learned beliefs via a proxy reward map, thus our
theorem in the main paper holds. In figure 10 and 11 we
show that different contrastive explanations can be extracted
by applying equation 8.

Cartpole We verify in figure 13 and 14 that our theorem
in the main paper holds without the aid of a proxy map.
We also give a demonstration of contrastive explanations in
figure 15 and 16.



What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

Taxi We provide animations of Figure 4 and 5 in the
main text; see attached video for the animation. We also
give contrastive explanations from DQN agent in Figure
17. Although the contrastive explanations are noticeably
fuzzier, the extracted intention is similar to our results for
Q-learning.

(a) Belief map for sticking (b) Belief map for hitting

(c) Reward belief for sticking

(d) Reward belief for hitting

Figure 7: Monte Carlo control blackjack simulation: here
we show the visualisations of belief maps and proxy action-
reward map when player sum = 10, dealer card = 7 with
no usable ace.



What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

Figure 8: Q-learning: visualisations of ground truth Q-table
and recovered Q-table from learned belief.

Figure 9: Monte Carlo control: visualisations of ground truth
Q-table and recovered Q-table from learned belief.



What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

(a)

(b)

Figure 10: Monte Carlo control, blackjack simulation: con-
trastive explanation when player sum = 10, dealer card = 7
with no usable ace. Figure 10a shows that hitting would
grant access to various future states. This is reflected in the
figure 10b, as the red block (consequence of sticking) indi-
cates sticking is undesirable since the action is more likely
to generate �1 reward.

(a)

(b)

Figure 11: Monte Carlo control, blackjack simulation: con-
trastive explanation when player sum = 17, dealer card = 9
with no usable ace. In contrast to figure 10a, hitting is more
likely to yield a more negative consequnce than twisting, as
evidenced by 11a that the red block (consequence of hitting)
at (1,�1) clearly outweights the cumulative sum of blue
blocks (consequence of sticking).



What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

(a) Belief map

(b) True trajectory

Figure 12: Monte Carlo control, cartpole simulation: belief map and trajectory visualisations.

Figure 13: Monte Carlo control, cartpole simulation: Q-table and recovered Q-table from learned beliefs. Each value is
numerically identical except for floating-point errors.

Figure 14: Q-learning, cartpole simulation: Q-table and recovered Q-table from learned beliefs. Each value is numerically
identical except for floating-point errors.

Figure 15: Monte Carlo control, cartpole simulation: selected contrastive explanations at state 79. We can intuitively reason
and justify the agent’s decision of moving to the right since it offers a greater stability. Moving to the left risks heading
towards the edges highlighted by the red blocks.



What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes

Figure 16: Q-learning, cartpole simulation: selected contrastive explanations at state 79. The figure shows that moving to the
right is undesirable since it will lead the agent to visit states which can cause possible failure, whereas moving to the left can
offer more guarantee of staying in the middle.

(a) Value ambiguity. a0: move south, a1: move west. Q(s, a0) = 14.9908, Q(s, a1) = 14.9858.

(b) Bounce back. a0: move south, a1: move west. Q(s, a0) = 17.9323, Q(s, a1) = 15.9981.

Figure 17: DQN, taxi simulation: contrastive explanations of taxi DQN agent. Refer to figure 6 in main text for descriptions
of each subplot.


	Introduction
	Value Function Decomposition
	Value Ambiguity
	Explaining Tabular Reinforcement Learning
	The Consistency of Belief Maps
	Deep Q-Learning

	Experiments and Discussions
	Conclusions and Future Work
	Agent Description
	Further Results

