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Abstract
Integrating explainability into deep neural net-
works without sacrificing prediction accuracy has
the potential of greatly improving its value to the
user. We propose to do this by exposing the steps
taken through the decision-making process in a
transparent manner. Instead of assigning a label to
an image via deep learning in a single step, we pro-
pose to learn a few iterative binary sub-decisions,
building a decision tree whose structure is given
by two agents that communicate through message
passing and is encoded into the memory represen-
tation of an RNN. In addition, our model assigns
a semantic meaning to each binary decision in the
form of attributes, providing concise, semantic
and relevant rationalizations to the user.

1. Introduction
Classification decisions of deep neural networks (DNN) are
often hard to interpret, hindering their practical employ-
ment in critical applications such as health-care. When
explanations are critical, decision tree models are often pre-
ferred over more complex models as they are inherently
interpretable through introspection. One goal of introspec-
tion is to reveal the internal thought process of the decision
maker to a machine learning practitioner (Park et al., 2018).
However, it has been argued that models that are optimized
for offering explanations through introspection need to as-
sume a loss in performance (Gunning & Aha, 2019). Indeed,
decision trees are not competitive on most computer vision
tasks as they fail to approach the accuracy of state-of-the-art
neural networks.

We overcome shortcomings of classical decision trees by
incorporating recent advances in multi-agent communica-
tion (Foerster et al., 2016) and by embedding the decision
tree structure into the memory representation of a recurrent
neural network (RNN). Our proposed model uses message-
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Figure 1. Our recurrent decision tree is learned by two agents com-
municating: Recurrent decision tree (left) asks questions, attribute-
based learner (right) answers these questions with a yes/no answer
which improves the classification after each step.

passing with discrete symbols that can be mapped to a
human-understandable vocabulary, greatly improving its
interpretability.

2. Recurrent Decision Trees via
Communication: RDTC

Our Recurrent Decision Tree via Communication (RDTC)
framework is a sequential interaction between two agents to
solve an image-classification task through communication
(see Figure 1). The first agent, i.e., the Recurrent Decision
Tree (RDT), learns a decision tree that allows introspec-
tion. The second agent, i.e., Attribute-based Learner (AbL),
learns attributes that provide rationales to make the commu-
nication human-understandable.

2.1. Agent to Agent Communication

For any single image x, our RDT agent tries to iteratively
aggregate information into an explicit memoryM that is
sufficient to discriminate the correct class label y from the
set of all classes Y . To gather more information, the RDT
agent sends a query message ct to the AbL agent. The
AbL answers the query ct in regard to the image x with a
binary response dt ∈ {0, 1} that the RDT uses to update its
explicit memoryM(t) =M(t−1) ⊕ (ct, dt) to improve its
prediction of the class y. This constitutes one iteration t of
the agent to agent communication.

Communication Protocol. Each work in the vocabulary
|A| corresponds to a binary attribute a ∈ A that the AbL
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Figure 2. A single communication step between RDT and AbL agents in our Recurrent Decision Trees via Communication (RDTC)
framework. RDT uses the hidden state ht−1 of its LSTM (yellow) to choose a single attribute act through fQuestMLP. It requests information
about an attribute from the AbL. AbL uses its fAttrMLP to predict a binary response dt = âct indicating the presence/absence of the
attribute. Finally, RDT updates its state ht and explicit memory Mt with the binary response to improve its classification prediction ŷt.

agent predicts about a given image, e.g. black beak for a car-
dinal. The AbL can learn to attach a human-understandable
meaning to the words when annotated attribute data is avail-
able. At each communication step t, the RDT chooses one
attribute act from the vocabulary, identified by its index ct,
and requests the presence or absence of this attribute in the
image. The AbL then provides this binary information dt
based on its own prediction. We deliberately limit the AbL’s
messages to be binary as clear yes/no answers are easier
to interpret than probability values, e.g., the beak is either
black or not rather than being 0.2% black.

Discrete Messages. To select a discrete index ct, we use
the Gumbel-softmax estimator (Jang et al., 2017; Maddison
et al., 2017) to sample from a categorical distribution via
the reparameterization trick (Kingma & Welling, 2014)

GumbelSoftmax(logπ)i =
exp((log πi + gi)/τ)∑K

j=1 exp((log πj + gj)/τ)
(1)

where log π are the unnormalized log-probabilities of the
categorical distribution, τ is temperature parameter and
gi ∼ Gumbel.

On the other hand, the binary responses dt (presence of
absence of an attribute in image x) from the observer are
not required to be stochastic. Therefore, we use regular
softmax (Hinton et al., 2015) with a temperature τ

TempSoftmax(logπ)i =
exp(log πi/τ)∑K
j=1 exp(log πi/τ)

(2)

which approximates an argmax function deterministically
as τ approaches 0. Popular training strategies include an-
nealing the parameter τ over time or augmenting the soft
approximation with an argmax function that discretizes the
activation in the forward pass and a straight-through identity
function in the backward pass. We resort to the second strat-

egy as it guarantees the communication signals to always be
discrete during training.

2.2. Recurrent Decision Tree (RDT) Agent

RDT consists of three parts, an explicit memory M, an
LSTM (Hochreiter & Schmidhuber, 1997), and a question-
decoder module, Question MLP as shown in Figure 2. To
decide on the attribute information to request, RDT uses
fQuestMLP for decoding the last hidden state ht−1 into a
categorical distribution log p(ct|ht−1) = fQuestMLP(ht−1)
where p(ct|ht−1) indicates the likelihood of requesting a
particular attribute from the AbL. We denote the attribute in-
dex ct ∈ {1, . . . , |A|} as a sample from p(ct|ht−1) obtained
by applying the Gumbel-softmax estimator.

After each iteration of the communication loop, RDT up-
dates its explicit memory with the new responseM(t) =
M(t−1) ⊕ (ct, dt). Moreover, RDT updates its hidden
LSTM state with the newly updated explicit memoryM(t)

and the AbL agent’s binary response dt as follows: ht =
LSTM(ht−1,M(t), ct, dt).

At each time step the explicit memoryM is used to predict
the class label: ŷt = fClassMLP(M(t)).

Since the primary objective of the RDT agent is to maxi-
mize the classification performance, we minimize the cross-
entropy loss of the predicted class probabilities ŷt and the
true class probabilities y with L = 1

T

∑T
t=1 LCE(y, ŷt) =

− 1
T

∑T
t=1

∑
i yi log ŷt,i. By averaging the cross-entropy

loss over all T time steps, we encourage the RDT to predict
the correct class in as few communication steps as possible.

At test time, we do not sample ct, but instead always take
the index with highest probability, i.e., argmax. With a
deterministic choice of ct there are exactly two distinct
states for both Mt and ht given the previous time step,
resulting in a binary decision tree.
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Model AWA2 aPY CUB MNIST CIFAR-10 ImageNet

ResNet (He et al., 2016) 98.2 ± 0.0 85.1 ± 0.6 79.0 ± 0.2 99.4* ± 0.1 93.3 ± 0.2 73.0 ± 0.1

dNDF (Kontschieder et al., 2016) 97.6 ± 0.2 85.0 ± 0.6 73.8 ± 0.3 99.2 ± 0.1 93.2 ± 0.1 72.6 ± 0.1

RDTC (Ours) 98.0 ± 0.1 85.7 ± 0.7 78.1 ± 0.2 99.3 ± 0.1 93.1 ± 0.1 72.8 ± 0.1

aRDTC (Ours) 98.1 ± 0.0 85.3 ± 0.3 77.9 ± 0.6 N/A N/A N/A

Table 1. Comparing our aRDTC (λ = 0.2) and RDTC (λ = 0) to the non-explainable ResNet and closely related dNDF. As MNIST,
CIFAR-10 and ImageNet do not have attributes, aRDTC is not applicable. (std is over 5 runs, * is simple CNN)

2.3. Attribute-based Learner (AbL) Agent

The Attribute-based Learner (AbL) agent provides the RDT
agent with a binary response to its request based on a set
of binary attributes â about the image, as shown in Fig-
ure 2. To do this, the AbL feeds its CNN image features
z to fAttrMLP that models a probability distribution over a
set of learned binary attributes log p(â|z) = fAttrMLP(z).
By applying softmax with temperature, we obtain binary
attributes â ∈ {0, 1}|A|, the discretization of p(â|z): â =
TempSoftmax(fAttrMLP(z)). Whenever the RDT requests a
particular attribute with its query ct, the AbL simply returns
the binarized attribute of the specified index to the AbL. We
denote this selection operation as dt = âct .

Note that the attributes â are either discovered via end-to-
end learning optimizing a classification loss, i.e., we refer to
this setting shortly as RDTC or they are predicted as human-
interpretable concepts using the attribute loss explained in
the following, i.e., we refer to this setting shortly as aRDTC.

Attribute Loss. RDTC learns splits that best separate the
data. However, these are not always easy to interpret. We
propose to learn attributes â that align with class-level
human-annotated attributes α making them interpretable. A
second cross-entropy term encourages this correspondence:

L =
1

T

T∑
t=1

[
(1−λ)LCE(y, ŷt)+λLCE(αy,ct , âct)

]
(3)

weighted by a hyperparameter λ. Here, αy,ct corresponds
to the ground-truth attribute label of class y that matches the
observer’s response âct . The final loss (L) encourages the
network to learn attributes that agree with human-annotated
attributes while optimizing for classification accuracy.

3. Experiments
We experiment on six datasets. AWA2 (Lampert et al.,
2014), CUB (Wah et al., 2011), aPY (Farhadi et al., 2009)
are three benchmark attribute datasets proposed by the
computer vision community. MNIST (Lecun et al., 1998),
CIFAR-10 (Krizhevsky, 2009) and ImageNet (Russakovsky

et al., 2015) serve to evaluate our model’s classification
performance without attribute information.

3.1. Comparing with the State of the Art

In this section, we compare our models aRDTC and RDTC
with Deep Neural Decision Forests (dNDF) (Kontschieder
et al., 2016). ResNet-152 (He et al., 2016) pre-trained on Im-
ageNet and fine-tuned on each of the datasets (except from
MNIST where we use a simple CNN) including its softmax
classifier serves as non-explainable deep neural network
(ResNet). After this pretraining, we fix the weights of the
perception module and extract the same CNN image features
z for our aRDTC and RDTC, as well as dNDF. Deep Neural
Decision Forest (dNDF) (Kontschieder et al., 2016) explic-
itly models the decision tree by mapping each inner tree
node to a output neuron defining the routing probabilities
of the input to the leaves through exhaustive tree traversal.
While dNDF uses soft splits, in aRDTC and RDTC we use
hard binary splits for each decision tree node for improved
interpretability.

Results. From the results in Table 1 we observe that, our
RDTC not only outperforms dNDF (e.g., 78.0% vs 73.8%
on CUB), the state of the art deep decision tree model, our
model exhibits improved interpretability, because we use
hard instead of soft binary splits. Moreover, our model
trained with the attribute loss, i.e. aRDTC, is able to give
a semantic meaning to the splits, without a significant loss
in accuracy. Although RDTC and aRDTC work with con-
strained single-bit communications to improve explainabil-
ity, they succeed in maintaining the accuracy of the non-
explainable state-of-the-art across all datasets.

3.2. Qualitative Results

Illustrating the decision making process helps the user get
an explainable overview of the internal decision process of
the whole classifier. We point to the tree branch into which a
certain class (indicated by an example image from this class)
falls and we present the attribute that is associated by each
branch on CUB in Figure 3 where the left and right sub-tree
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Figure 3. Our aRDTC learns explainable decisions via the decision tree and gives each decision a human-understandable meaning. Here
we show the first three decisions for a subset of the 200 classes of birds in CUB where each image represents a class.

indicates that the attribute is present or absent respectively.

4. Conclusion
In this work, we propose to learn a decision tree recurrently
through communication between two-agents. Our RDTC
framework uses hard as opposed to soft binary splits for
easier interpretation. Combining the end-to-end learning
with human-annotated side information in aRDTC yields an
explainable decision tree model that exposes a sequence of
semantic subdecisions when classifying fine-grained image
datasets while maintaining the accuracy of non-explainable
deep models.
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