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Abstract

Towards the goal of presenting contrastive expla-
nations for the output of a classifier, we present
a method for finding contrastive foils in feature
space and then visualizing in data space for easy
interpretation. To produce a simple classifier for
this method, we present a model that combines
decision trees with supervised variational autoen-
coders using our new differentiable decision tree.
This allows for end-to-end optimization of a deep
network to perform feature extraction from struc-
tured, high-dimensional data for classification by
a single decision tree. Our experiments demon-
strate that the resulting model is satisfactory in
both classification and image generation and can
explain a model’s reasoning in answering a num-
ber of questions on classification and instance
generation. Further experiments demonstrate that
the model produces explanations using features
that align with human-produced labels without
any prior access to those labels.

1. Introduction

As use of machine learning techniques become more
widespread, it is critical for developers, users, and other
stakeholders to understand how learned models operate.
This helps gauge trust in a model, utilize the model more
effectively, and uncover its flaws (32). While many ad-
vances have been made to improve the interpretability of
such models (13; 35; 29), existing approaches largely focus
on attribution which limits the ability to explore contrastive
cases, inputs that are similar to the original input data but
have been modified to change the model output. Alternative
methods study the internal mechanics of a model (14; 5),
which leaves the onus with the human user to reconstruct
and follow the model’s reasoning. We propose that con-
trastive examples, presenting explanations in data space
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rather than in terms of the internals of the model, offer this
kind of explanation (28). Literature in social science places
emphasis on contrastive examples and “what if”” analysis as
a primary method of explainability (28).

Many methods exist for minimally perturbing data such that
model output is changed, but their main purpose is adversar-
ial attacks and thus make changes that are invisible to the
human eye. By contrast, we propose a method of discov-
ering contrastive examples by making changes in feature
space using features that are both important in classifica-
tion and whose changes are easy for a user to visualize in
data space. To this end, we leverage single decision trees,
which are simple, explainable classifiers. Since they are
unsuitable for use with complex, high-dimensional data, we
introduce a differentiable decision tree (DDT) to classify the
latent variable of a variational autoencoder (VAE), which
learns a factored, low-dimensional representation of data.
This combined model is trained with gradient descent us-
ing a weighted sum of the VAE ELBO objective and the
classification cross entropy. We call this combined model
Classifier+VAE, or C+VAE, which we find to have good
classification accuracy and generative log-likelihood, while
optimizing both objectives simultaneously and using simple,
feed-foward encoder and decoder.

The notion of explainability that we work with is similar to
that of Ribeiro et al. (32). Both their work and ours focus
on explaining a model’s reasoning per instance as well as
for the overall model. A key difference is that they focus
on classification, whereas our results are for both classifi-
cation and instance generation. Further, their approaches,
while applicable to many types of learning models, require
sampling instances near x (the instance to be explained) in
terms of interpretable features, build an interpretable local
model over those samples, and then use this proxy to ex-
plain the prediction on x. In contrast, we use the DDT as
our classifier, which allows us to directly read out an expla-
nation. Specifically, our use of the DDT helps guide a walk
in latent space, and the results of the walk are utilized to
explain classifications. Our model also offers explanations
in a generative model, again using walks in latent space.
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1.1. Examples

Below are example questions that an explainable model
might answer, categorized based on whether they relate to
classification or generation and whether they concern indi-
vidual instances or a model’s behavior. We are interested in
finding contrastive cases to answer each of these questions.

1. Classification

(a) Instance-based: (i) Why is instance x classified
as y? (ii) Why is instance x classified as y rather
than y'? (iii) What changes to 2 would change its
predicted class from y to y'?

(b) Model-based: (i) What constitutes a class-y in-
stance? (ii) What differentiates class y from class
y'? (iii) Which classes most resemble each other
to the discriminator?

2. Generation

(a) Instance-based: (i) Why does instance = have low
(or high) likelihood? (ii) Why does instance z,
truly of class ¥, appear like class 1'?

(b) Model-based (i) What is the effect of latent vari-
able z; on generated instances, e.g.: (A) What
happens if z; is large (small)? (B) What features
describe a class-y instance? (C) What does an
ambiguous, class y/class ¢’ hybrid look like? (ii)
What classes 3,3’ are likely to have generated
instances that resemble each other?

1.2. Our Contributions

We propose methods for generating contrastive answers to
a representative subset of these questions in Sec. 3.3 and
experimental results in Sec. 4.3. We propose one method
to answer both 1(a)i and 1(a)ii together in order to make
explicit the contrastive foil (28), which is implicit in the
question. Specifically, we contribute the following. (1) A
combined model, composed of a SVAE and our new dif-
ferentiable decision tree, that both autoencodes input data,
calculating a latent featurization z = F'(z) as well as an
approximate inverse g(z) ~ F~!(z), and classifies using
the latent featurization as input to the decision tree. To-
gether, these features enable human-recognizable feature
discovery using the features of the decision tree and allows
for changes to data in feature space to be visualized in data
space. (2) An interpretability algorithm Walk for generat-
ing contrastive examples in feature space (which is made
straightforward if the classifier is simple) and then visual-
izing the contrastive examples in data space. We propose
specific uses of the algorithm for answering why-questions
a user might have about a classifier. (3) Experiments on
data sets MNIST, Fashion-MNIST, and CELEBA, where

we demonstrate feature discovery and apply Walk to an-
swer questions locally about classifying particular data and
globally about the classifier as a whole.

The rest of this paper is organized as follows. In Section 2
we give relevant background. Then in Section 3 we describe
the SVAE and present our differentiable decision tree and
our combined model, as well as approaches for generating
explanations. Our experimental results appear in Section 4.
Finally, we present related work in Section 5, and conclude
in Section 6 with a discussion of future work.

2. Background

As part of our work, we extend the variational autoencoder
(VAE) of Kingma and Welling (23) that optimizes the evi-
dence lower bound (ELBO)

L(x;0) = Eq(z)x)(log p(x | 2)) — KL(q(z | x)[|p(2))
ey
to a supervised VAE that optimizes
L' (x,930) = Eq(ap (log p(x | 2))~ K L(q(z | x)|N (2 | uy;))

where y is a class label, u,, is the posterior mean of class
y, and 7 is a probability vector that may be pre-computed
with the assumption that the training labels are iid. As
[ty is calculated empirically from the posterior, it can be
initialized to small random values for all classes and updated
regularly throughout training. This amounts to utilizing a
Gaussian mixture as a prior distribution, similar to that
of Dilokthanakul et al. (10). A key difference between
their work and ours is that our use of class labels enhances
training, obviating the need to marginalize over all classes
to compute the K-L divergence. This helps avoid the over-
regularization problem that they discuss in their paper, while
achieving high sample quality in our generated images.

3. Model and Algorithm!'

Now we describe our model and the Walk algorithm. The
main contributions of our model are: (1) a differentiable
decision tree (DDT), where we describe how to compute the
expected probability distribution over predicted labels and
use this to differentiate the expected loss of the tree; and (2)
a combined VAE model, using the DDT and a supervised
VAE, designed to learn a latent variable distribution suitable
simultaneously for classifying data, generating data, and
interpretable latent embedding (C+VAE).

3.1. Differentiable Decision Tree (DDT)

Decision trees are simple, explainable models. To utilize
them in image analysis, we train a VAE for non-linear dimen-

!Code can be found at https://github.com/
anonymous2020icml/icml12020submission
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sionality reduction so the tree can classify a low-dimensional
embedding. We develop a probabilistic generalization of
decision trees, where each leaf returns a distribution over all
classes: if instance z lands in leaf ¢ of tree T, then T returns
distribution Pr(y | £). As part of this generalization, we
take a user-specified loss function losst(z, y) and compute
the gradient of the expected loss Ly = E,. p[lossr(z, y)],
where D is the distribution q(z | x) = N(xX; pix, 0x 1),
where (1 and o are the outputs of the encoder on input
x. This allows optimization of the distribution parameters
for maximum likelihood w.r.t. an existing decision tree 7.
Thus, an embedding of the data may be learned in an EM-
style manner, alternately learning a tree on the embedding
produced by the parameters of a deep encoder and optimiz-
ing the embedding parameters to better fit the class-based
partitioning induced by the learned decision tree.

3.2. Our Combined Model

The supervised VAE and decision tree inference can be used
to both classify and reconstruct data from the encoded pa-
rameters of its latent distribution. Although an embedding
could be learned by only optimizing classification accuracy
of the decision tree, the additional reconstruction objective
ensures that the learned representation is contains informa-
tion for other, downstream uses, and is suitable for visu-
alization. Our new architecture C+VAE (Classifier+VAE)
uses a deep encoder network to parameterize a Gaussian
distribution, which is then used as the input for classifying
with the DDT and to reconstruct the encoded data with a
deep decoder network. Generally, these modifications can
also be applied to existing VAE architectures when label
information is available. The C+VAE training procedure
begins by randomly initializing the encoder/decoder param-
eters and encoding the training data to initialize the decision
tree and aggregate posterior class means. Training then
proceeds by running several epochs of gradient updates be-
fore re-training the decision tree and updating the aggregate
posterior class means until the model converges. The op-
timization function of our combined model consists of a
linear combination of the objective of the supervised VAE
and the expected error of the current decision tree T'. The
modified VAE objective of the C+VAE to be minimized is

f(x,y;0) = —L'(x,y;60) + vL1 . 3)

3.3. Explaining Model Reasoning

To answer Section 1.1’s questions, our model uses the base
algorithm Walk(z, z’, §), which visualizes data between la-
tent points z and 2’ using step size? J. After each step, Walk
decodes the intermediate latent point to data space. This
sequence of intermediate instances is used in the model’s
explanation. E.g., by highlighting image differences along
the walk, the model can explain what the important differ-

2§ is calculated as the distance between z and 2’ divided by the
number of steps in all cases except when addressing questions 1(b)
and 2(b), when standard deviations of the aggregate posterior in
question are used.

ences are in data space, especially those regarding tree deci-
sion boundaries. For example, to answer Question 1(a)(iii)
(What changes to x would change its classification from y
to y'?), first identify the (class-y) tree leaf £ that z filters
to, then find the lowest common ancestor of £ and any leaf
¢’ predicting class y’. Let 2z’ be the mean of the training
instances that filter to ¢’. Then walk from z to 2’ using the
dimensions tested in the tree on a shortest path from £ to £'.

To answer Question 1(b)(ii) (What differentiates classes y
and y’?), first find a pair of leaves (¢, ¢’) such that ¢ pre-
dicts y and ¢’ predicts y' (if there are multiple such pairs,
choose the pair with minimal tree distance from ¢ to ¢').
Let z and 2’ be points in latent space from £ and ¢’ that are
nearest each other. Walk from z to 2z’ using the dimensions
tested in the tree on a shortest path from £ to ¢'. To answer
Question 2(a)(i) (Why does z have high/low likelihood?),
first encode x as its latent representation z, then find the
class mean p, nearest z. Walk from z to yu, across all
latent dimensions. To answer Question 2(b)(i)(C) (What
does a class y/class 3’ ambiguous instance look like?), walk
from fi,, to 1, across all latent dimensions and return the
point z midway between them. To answer Question 2(b)(ii)
(What classes y and y’ are likely to have similar instances?),
first choose the pair of classes (y, y') with the closest class
means p, and p,,. Walk from g, to p,, across all latent
dimensions. It is possible to answer the other questions
presented in Section 1.1 using similar calls to Walk using
latent features the decision tree makes the relevant choices
on. An exception is Question 1(b)(iii) (Similar classes to
the discriminator), in which the answer simply comes from
identifying a pair of classes whose leaves are closest to their
LCA.

4. Experiments

Our experiments are designed to empirically study the fol-
lowing claims: (1) the supervised VAE effectively takes ad-
vantage of class labels to improve generative performance;
(2) the C+VAE classifies competitively with other tree-based
embedding methods while simultaneously maintaining a
generative model competitive with the literature; (3) the
differentiable decision tree is an explainable classifier that,
when used in C+VAE and with Walk, can explain its rele-
vant discriminitive features in terms of data space attributes;
and (4) the generative model of our approach can be ex-
plained by running Walk in latent space.

We used MNIST and Fashion-MNIST. We applied the
C+VAE modifications to a standard VAE (23) with two-layer
MLPs of 500 hidden units as encoder and decoder models
and a 50-dimensional latent variable z without importance
sampling or an autoregressive prior. CART from scikit-learn
was used to train the decision tree, regularized by limiting
the decision tree depth to 8. Unless otherwise noted, we
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used v = 100 in the objective function of the C+VAE (Equa-
tion (3)) and n = 3 epochs of gradient steps between each
update of both the decision tree and the aggregate posterior
parameters. Adam (21) was used for optimization and the
data was not pre-processed or augmented.

4.1. Evaluating the Supervised VAE

Table 1 lists classification results of a number of tree-based
and VAE-based models on MNIST (C+VAE’s error on Fash-
ion MNIST was 7.12%). The M1:SVAE+CART model
trains the supervised VAE to convergence, and then trains a
standard decision tree with CART to classify its latent code
in the style of M1 (22). The intent is to highlight the effect of
training without the backpropagated classification loss from
the DDT. C+VAE sans reconstruction zeros the reconstruc-
tion loss term of the objective function to highlight the effect
of training a model that only learns an embedding suitable
for classification with the DDT. We compare our results to
those of boundary trees (BT) with embedding (39), another
tree-based interpretable classifier, as well as M1+M2 (22),
and the Ladder Network (30), which are other VAE-based
classifiers.

We then evaluate the efficacy of leveraging label data in a
supervised VAE in generation, equivalent to using C+VAE
with 7 = 0. The flexibility of a Gaussian mixture and the
fact that the data is clearly multi-modal both contribute to
the SVAE log-likelihood of —102.77, better than the log-
likelihood of —109.56 using our implementation of the VAE,
which uses an unmodified Gaussian prior. We expect this
difference to be the result of using a flexible prior that is
more faithful to the true prior. This flexibility is similar
to that seen in techniques like normalizing flows (31), but
modifies the prior rather than the posterior and uses the
additional information provided by label information.

4.2. Evaluating the C+VAE

We next empirically evaluate C+VAE for classification and
generation. As a baseline, we first examine how well a
standard (non-differentiable) decision tree from CART can
classify when the data is encoded by a supervised VAE (but
with no error feedback: v = 0). This is similar to M1 (22)
with a different VAE. In Table 1, row M1:SVAE+CART
shows that without the error feedback from the tree, it is un-
likely that the embedding will be useful in classification by a
decision tree. This motivates our use of the DDT. To test the
benefit of reconstruction in learning an embedding that can
be classified well, we ran a test in which we switched off the
reconstruction error feedback in learning (removing the first
term of Equation (2)). In Table 1, row C+VAE sans recon-
struction shows a significant improvement in classification
error over M1:SVAE+CART, but still quite high.

Row C+VAE in Table 1 shows our combined method’s per-

Table 1. MNIST classification error for fully supervised tree-
and VAE-based models. C+VAE’s error on Fashion MNIST

was 7.12%.
Model Error
M1:SVAE+CART 37.09%
C+VAE sans reconstruction 7.30%
C+VAE 1.98%
BT w/embedding 1.85%
M1+M2 0.96%
Ladder Network 0.57%

formance with v = 1000. We see a large improvement in
classification error over C+VAE sans reconstruction, demon-
strating the importance of both types of feedback in train-
ing. While C+VAE’s classification performance is worse
than in the literature, it’s still competitive, despite simulta-
neously optimizing both classification and log-likelihood.
Also, C+VAE’s log-likelihood of —106.83 is comparable to
the —109.56 from our parallel implementation of the VAE,
which uses the same encoder-decoder pair as C+VAE. A
more powerful encoder or the use of more recent techniques
(e.g., normalizing flows, importance weighting, etc.) might
improve both error and log-likelihood even further.

4.3. Evaluating the Explainability of the DDT

The decision trees learned by C+VAE on MNIST and
Fashion-MNIST (both omitted for space) were then used to
answer answer some of the questions from Section 1.1.

Question 1(a)(iii) (What changes to z would change its
predicted class from y to y’'?) In our example, z is an
MNIST digit “8” mispredicted as a “3”, and the question
is what it would take for the model to correctly classify
it. The leftmost digit in Figure 1 is the original digit
and the remaining ones are the result of walking from z’s
representation z along dimension 20 (the attribute tested by
the parent of Class 8’s leaf and Class 3’s leaf) to the mean of
the training instances in the leaf predicting class “3”. The
model’s answer to Question 1(a)(iii) is, “To change x from
class “3” to “8”, subtract the pixels colored green and add
those colored magenta.”

Question 1(b)(ii) (What differentiates class y from class
y’?) 1In this example, class y is “9” and class 3’ is “4”.
Figure 2 shows the results of walking from the mean of
the training instances in the “9” leaf of the tree to its “4”
leaf.  Thus, the model’s answer to Question 1(b)(ii) is,
“The differences transitioning from class “9” to class “4” are
to subtract the pixels in green and add those in magenta.”

Question 1(b)(iii) (What classes resemble each other to
the discriminator?) Here, we find pairs of classes near their
lowest common ancestor in the tree, e.g., “4”/“9”.
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Figure 1. What changes to this input (left) would change its pre-
dicted class from “3” to ““8” under the model? The bottom row of

images show which regions of the image are salient for discrimi-
nating between instances of “3” and “8”.

Figure 2. What differentiates class “9” from class “4”? The center
image is the reconstruction of the point halfway between p4 and
4o in latent space. The left and right images walk along dimension
26 towards p4 and pg, respectively (image changes highlighted).

Question 2(a)(i) (Why does x have low likelihood?) Fig-
ure 3 shows instance x whose latent representation z is not
near any class mean in the generative model. Thus, the
model’s answer to Question 2(a)(i) is, “Instance x is un-
likely since it does not resemble its most similar class nor
the class of its label.”

rirunnunn
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Figure 3. Why does this instance of “trouser” have low likelihood?
The model’s prediction of “dress” and the actual label “trouser’ are
both ill-fitting. The rightmost images show the generated average
“dress” (top) and “trouser” (bottom). The authors note the similarity
of the intermediate images with womens’ jumpsuits.

Question 2(b)(i)(C) (What does a 3y /y’ class hybrid look
like?) Figure 4 shows decoded images from the means of
classes “dress” and “coat”, along with the hybrid decoded
from the mean of means.

4.4. Correlation to Human Explanations

Our final experiment is to determine how well C+VAE can,
without the use of auxiliary information, discover expla-
nations that can be couched in terms originally derived by
human users. Specifically, we investigated the following
questions: (1) Does a z (latent) dimension and a thresh-
old correlate well with a human-defined attribute, on its
own?; and (2) How do these discovered explanations match

00

Figure 4. What does an ambiguous, class “dress”/class “coat” hy-
brid look like? Left image decoded from pigress, right from ficoat,
and the center from the point halfway between them.

with CART’s? We used the CelebA? dataset (37), which
has over 200, 000 images of over 10, 000 celebrities. Fur-
ther, each image has values of each of 40 binary attributes.
For each binary attribute y. € {“No Beard”, “Smiling”,
“Male”, “Brown Hair”}, we let y,. be the class label to be
learned, training CART on the 39 other binary attributes
as well as training C+VAE on only the images (no binary
attributes). We used the same train/test split that was al-
ready in place in the CelebA dataset. For each ., let TCC
denote the CART tree learned and 7" denote the C+VAE
tree. Table 2 presents the test set accuracy of 7 vs TV
for each c. Observe that 7)) is at least as accurate as 7.
We then measured how well the binary attributes correlated
with the latent-space features evaluated by 7). For each c,
let Y, be the set of 39 other attributes, excluding y.. Then
for each y, € Y., we computed across the test set the ¢
coefficient (38) between y, and the test at the root of V.
The ¢ coefficient, also known as the mean square contin-
gency coefficient, measures how much two binary variables
associate with each other. Table 2 presents for each y., all
Yo € Y, with |¢| > 0.4, which is considered a strong rela-
tionship* (sign of ¢ is irrelevant, since it changes with the
inequality at the root of 7)'). We now discuss each of the ..
class attribute values with respect to Questions (1) and (2).

“No Beard”: (1) (Correlation to human-defined attributes)
All four y, attributes with |¢| > 0.4 have obvious relation-
ships to facial hair. (2) (Correlation to TCC ) All four y,
attributes with |¢| > 0.4 appeared in 7 within distance 3
of the root, and all except Mustache within distance 2. The
only CART attribute near the root and absent from Table 2
is 5 o’clock Shadow, which had ¢ = 0.38.

“Smiling”: (1) Clearly, “Mouth Slightly Open” is a valid
justification to classify as “Smiling”. Further, “High Cheek-
bones” is arguable as an explanation since a large smile
gives the appearance of high cheekbones. (2) TCC had “High
Cheekbones” at the root and “Mouth Slightly Open” tested
at both the root’s children. This exactly correlates with the

*http://mmlab.ie.cuhk.edu.hk/projects/
CelebA.html

‘nttps://www.statisticshowto.
datasciencecentral.com/

phi-coefficient-mean-square-contingency-coefficient/
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Table 2. Test set ¢ coefficient between top values of y, and z value
at root of C+VAE-trained tree, for select values of y.. “CART”
accuracy is for TS and “C+VAE” is accuracy for T .

Accuracy

Ye Yo ) CART | C+VAE

No Beard Sideburns —0.47 0.94 0.94
No Beard Goatee —0.46
No Beard Male —0.45
No Beard Mustache —0.41

Smiling High Cheekbones 0.62 0.85 0.93
Smiling Mouth Open 0.52

Male Wearing Lipstick | —0.79 0.93 0.96
Male Heavy Makeup —0.64
Male No Beard —0.49

Brown Hair Black Hair —0.51 0.82 0.82

only two y, attributes with |¢| > 0.4.

“Male”: (1) “Wearing Lipstick” and “Heavy Makeup” are
solid explanations of predicting “Male” as false in the
CelebA dataset. On the other hand, “No Beard” is likely
a false indicator, since it is true in 83% of the data set.
(2) T had “Wearing Lipstick” at the root and “No Beard”
and “Heavy Makeup” at the root’s children. This exactly
correlates with the only three y, attributes with |¢| > 0.4.

s

“Brown Hair”: (1) Clearly, the presence of “Black Hair’
is an explanation of not “Brown Hair”. Interestingly, what
is lacking in Table 2 is “Blond Hair”, which would also
be a good explanation, but had only ¢ = 0.29. (2) T¢
had “Black Hair” at its root, with Blond Hair and a leaf
as the root’s children. The root’s attribute matches our top
correlates strongly with our y,, attribute.

Note that trees 7, were learned with no knowledge of
the attributes in Y,, i.e., C+VAE trained with only images.
Despite this, C+VAE was still capable of learning trees that
can explain in terms of human-defined attributes in Y.

5. Related Work

Work using deep networks for representation learning with
decision trees includes Deep Neural Decision Forests (24),
which stochastically make routing decisions through a tree
according to the outputs of a deep convolutional network.
This achieved good classification performance, but it is un-
clear how to interpret the proposed classification process.
To make the tree differentiable, our method of integrating
a distribution over the tree’s decision regions is a novel
approach. Another tree-based method uses differentiable
boundary trees to learn an embedding suitable for k-nearest
neighbor (39). The learned representation allows a small,
interpretable boundary tree to classify effectively, similar
to our technique. The classification accuracy of the tech-
nique marginally outperforms our combined model, but the
C+VAE also acts as a generative model and does not suffer
from the significant complexity of having to use dynamically

constructed computation graphs. Decision sets have been
shown to be effective interpretable classifiers (26). It would
be interesting to adapt our DDT approach to differentiable
decision sets to train and operate in the latent layer.

Other work in classifying the latent codes produced by
a VAE includes Kingma et al. (22), whose M1 semi-
supervised model learns to classify from the latent embed-
ding similarly to our combined classifier. However, M1
trains the discriminator separately from the VAE and lacks
explainability as the class separation is performed solely by
a black-box discriminator. The M2 model is similar to the
supervised VAE, but doesn’t change the VAE prior. Dilok-
thanakul et al. (10) present a Gaussian Mixture Variational
Autoencoder to learn a class-focused latent representation.
Our work assumes a supervised, rather than the GMVAE’s
unsupervised environment, allowing the classifying modifi-
cation to the VAE framework to be more explainable.

Related to explainability, our work most resembles that of
Ribeiro et al. (32), described in Section 1. Much other
recent work in deep model interpretability is rooted in learn-
ing disentangled latent representations (2; 6; 18; 17; 4; 17,
12; 19; 9; 25; 11; 3; 8; 33; 27; 34; 20; 7; 15). Gen-
erally, such approaches attempt to train models towards
maintaining latent representations where a single latent vari-
able ties to a single attribute in data space, such as object
class, color, position, rotation, size, etc. Related approaches
ILVM and JLVM (1) specify their interpretable representa-
tions outside of the latent variables used in the core model,
and then learns a bijection between them. Finally, Vedantam
et al. (36) specify attribute vectors defined over data space
and train a product-of-experts model to generate instances
based the presence of subsets of these attributes. These dis-
entanglement approaches work to capture semantics of the
latent representation in terms of features in the data space,
but in contrast to our work, they do not attempt to directly
explain how such features relate to the model’s reasoning in
classification or generation. It should be straightforward to
combine some of these (e.g., 5-VAE) with our model.

Analyzing an instance to determine how to change its pre-
dicted class is related to adversarial learning (16), where
one modifies an instance in a way imperceptible to humans,
but the classifier changes its prediction. A key difference is
that our approach aims to make perceptible changes to the
input, so the user can follow the explanation.

6. Future Work

Future work includes applying our approach to other data
with more powerful encoders and decoders to see how per-
formance is affected. We will also look into extending our
approach to handle unlabeled data in applications such as
semi-supervised learning and clustering. Other future work
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includes applying disentanglement of latent variables such
as B-VAE.
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