
Explaining Neural Network Decisions Is Hard

Jan Macdonald 1 Stephan Wäldchen 1 Sascha Hauch 1 Gitta Kutyniok 1 2

Abstract

We connect the widespread idea of interpreting
classifier decisions to probabilistic prime impli-
cants. A set of input features is deemed relevant
for a classification decision if the classifier score
remains nearly constant when randomising the re-
maining features. This introduces a rate-distortion
trade-off between the set size and the deviation
of the score. We explain how relevance maps can
be interpreted as a greedy strategy to calculate
the rate-distortion function. For neural networks
we show that approximating this function even
in a single point up to any non-trivial approxima-
tion factor is NP-hard. Thus, no algorithm will
provably find small relevant sets of input features
even if they exist. Finally, as a numerical com-
parison we express a Boolean function, for which
the prime implicant sets are known, as a neural
network and investigate which relevance mapping
methods are able to highlight them.

1. Introduction
Traditional machine learning models such as linear regres-
sion, decision trees, or k-nearest neighbours allow for a
straight-forward human interpretation of the model predic-
tion. In contrast, the reasoning of highly nonlinear and
parameter-rich neural networks remains generally inaccessi-
ble. An important first step to solve this problem is deciding
which input features are important for a specific classifica-
tion.

Recent years have seen progress on this front with the in-
troduction of multiple explanation models for deep neural
networks (Bach et al., 2015; Lundberg & Lee, 2017; Ribeiro
et al., 2016; Shrikumar et al., 2017; Simonyan et al., 2013;

1Institut für Mathematik, Technische Universität Berlin,
Berlin, Germany 2Department of Physics and Technology, Uni-
versity of Tromsø, Tromsø, Norway. Correspondence to: Jan
Macdonald <macdonald@math.tu-berlin.de>, Stephan Wäldchen
<stephanw@math.tu-berlin.de>.

Presented at the XXAI Workshop, 37 th International Conference
on Machine Learning (ICML), 2020. Copyright 2020 by the au-
thor(s).

Zeiler & Fergus, 2014). These models provide additional
information to a prediction in form of a map that assigns
importance values to individual input features.

Most commonly, these maps rely on heuristic arguments
that motivate the algorithms that produce them. There is
yet no formal agreed upon common notion of relevance.
There is no specific question that these maps try to answer
and they are mostly compared to human intuition about
what part of the input variables should be of importance.
Notable exceptions are Shapley values (Shapley, 1953) that
are required to satisfy certain game theoretic properties.

However, relevance maps have been compared numerically
using, e.g., pixel-flipping (Samek et al., 2017) and input per-
turbation (Fong & Vedaldi, 2017). This points us towards
what practitioners understand as relevance and what infor-
mation they expect relevance maps to provide. The common
criterion for relevance that we identified can be summarised
by the following question.

Q1: Is there a small part of the input that deter-
mines the classification with high probability?

A more quantitative version of the question is the following.

Q2: What is the smallest part of the input that
determines the output with high probability?

A reasonable explanation method should be able to answer
these questions.

We will see that answering these questions is closely related
to a probabilistic version of prime implicants and results
in evaluating a rate-distortion function. We demonstrate
how relevance maps can be understood as visualisations of
greedy approximations of such a function. This allows us
to give a direct meaning to the actual values in a relevance
map.

Furthermore, we show that answering these questions is
generally a hard computational problem:

Any efficient algorithm cannot reliably answer Q1
or approximate Q2 within any non-trivial approx-
imation factor1.

1unless P = NP

Explaining Neural Network Decisions Is Hard

We see this result as an indication that explanation algo-
rithms will have to continue to rely on heuristic motivation
and thorough numerical comparison.

Notation Throughout, d ∈ N is the dimension of the sig-
nal domain. We set [d] = {1, . . . , d} and for a binary signal
x ∈ {0, 1}d or continuous signal x ∈ [0, 1]d and a subset
S ⊆ [d] we denote by xS the restriction of x to compo-
nents indexed by S. The uniform distributions on {0, 1}d
and [0, 1]d are U({0, 1}d) and U([0, 1]d) respectively and
1d ∈ Rd is a vector of ones.

2. From Prime Implicants to Rate-Distortion
Prime implicants are a concept from Boolean logic that
has been extended for abductive reasoning in first order
logics (Marquis, 1991; 2000) and explanation of classifier
decisions (Shih et al., 2018). In a nutshell, an implicant
explanation is a subset of the input variables that is sufficient
for the decision. In other words, keeping the implicant
variables fixed will lead to the same classification for all
possible completions of the remaining variables. A prime
implicant explanation is a minimal implicant with respect
to set inclusion and thus can not be reduced further.

However, the deterministic requirement to produce the same
classification for all completions is often to strict, especially
for high-dimensional problems as commonly found in mod-
ern machine learning. Let us illustrate this with the task
of image classification as an example. Here, often small
regions of the input image can be manipulated in a way
that changes a classifier prediction, e.g. through adversarial
patches (Brown et al., 2017; Liu et al., 2018). Thus, prime
implicant explanations will have to cover large portions of
the input image in order to exclude all adversarial patches,
independent of the size of the actual object in the image
that led to the original classifier prediction. This is often
undesirable and not very useful to uncover the underlying
reasoning of the classifier.

Therefore, a relaxation of this notion, called δ-relevance,
was recently introduced for Boolean classifiers. It can be
seen as a probabilistic version of prime implicant expla-
nations, which only requires that the classifier prediction
remains unchanged with high probability.

Definition 2.1 (Wäldchen et al., 2019). Let δ ∈ [0, 1],
Ψ: {0, 1}d → {0, 1}, and x ∈ {0, 1}d. A set S ⊆ [d]
is called δ-relevant for Ψ and x, if

Py∼U({0,1}d)[Ψ(y) = Ψ(x) |yS = xS] ≥ δ.

For the special case δ = 1 this is the same as prime impli-
cant explanations. Deciding whether there exists a small
δ-relevant set was shown to be NPPP-hard for δ ∈ (0, 1)
by Wäldchen et al. (2019). For the binary case, this ex-

actly amounts to answering Q1, while finding the smallest
set S that achieves relevance of a given δ corresponds to
answering Q2.

The formulation of δ-relevance introduces a trade-off be-
tween the probability threshold δ and the minimal set size
|S| that can achieve it.

Here we want to take this idea further and extend it from the
binary to the continuous setting. Given S and x we write
y ∼ US when yS = xS and ySc ∼ U

(
{0, 1}d−|S|

)
. Then,

we can rewrite the δ-relevance condition as

Py∼U({0,1}d)[Ψ(y) = Ψ(x) |yS = xS] ≥ δ
⇐⇒ Ey∼U({0,1}d)[|Ψ(y)−Ψ(x)| |yS = xS] ≤ 1− δ
⇐⇒ Ey∼US [|Ψ(y)−Ψ(x)|] ≤ 1− δ.

The right hand side 1−δ can be seen as a distortion measure
bounding the expected change in the classifier prediction.
This formulation through an expectation is well suited to be
generalised to a continuous setting. Also, other probability
distributions as well as other distance measures than the
absolute difference might be of interest.

Let now Φ: [0, 1]d → [0, 1] be a classifier function, V be
a probability distribution on [0, 1]d, and n ∼ V a random
vector. We define the obfuscation of a signal x ∈ [0, 1]d

with respect to S ⊆ [d] and V as a random vector y that is
deterministically defined on S as yS = xS and distributed
on the complement according to ySc = nSc . As above, we
write VS for the resulting distribution of y. This enables us
to define the distortion of S with respect to Φ,x and V as

D(S,Φ,x,V) = Ey∼VS [dist(Φ(x),Φ(y))] ,

where dist(·) is a distance measure, e.g. absolute difference
or squared difference. We will use the abbreviated notation
D(S), whenever Φ, x, and V are clear from context.

The relationship between set size and distortion is described
by the rate-distortion function, defined as

R(ε,Φ,x,V) = min{ |S| : S ⊆ [d], D(S,Φ,x,V) ≤ ε }.
(1)

The distortion limit ε takes the role of 1 − δ from before.
Again, we use the abbreviation R(ε) if the context is clear.

The idea of formulating relevance from a rate-distortion
viewpoint can be derived from the hypothetical setup il-
lustrated in Figure 1. The terminology is borrowed from
information theory where rate-distortion is used to analyse
lossy data compression. In that sense, the set of relevant
components can be thought of as a compressed description
of the signal with the expected deviation from the classifica-
tion score being a measure for the reconstruction error.

This framework is used to state a clearly defined objective
that relevance maps should fulfil: Given a distortion limit ε,

Explaining Neural Network Decisions Is Hard

Alice Bob
rate |S|

original image partial image random completion

Φ(x) = 0.97

“monkey”

Φ(y) = 0.91

“monkey”

Figure 1. We motivate the rate-distortion viewpoint from the fol-
lowing hypothetical scenario: two people, Alice and Bob, have
access to the same neural network classifier. Alice classified an
image as a “monkey” and wants to convey this to Bob. She is
only allowed to send a limited number of pixels to Bob, who will
complete the image with random values. Alice’s best chance of
convincing Bob is to transmit those pixels that are most relevant
for the class “monkey” and ensure a small difference between their
classification scores in expectation.

the goal is to find a set S achieving the minimum in (1). This
amounts to solving a continuous generalisation of finding
small δ-relevant sets. Thus, evaluating the rate-distortion
function answers questions Q1 and Q2. We will show that
no efficient algorithm can always fulfil this objective. Still,
it can be used to numerically evaluate the quality of rele-
vance maps that were produced by heuristic algorithms, as
discussed in the next section.

3. Relevance Maps and Orderings
Most established explanation methods calculate continu-
ous relevance scores for all input components instead of a
strict partition into relevant and non-relevant components.
It seems not immediately clear how the two concepts re-
late. However, we argue that the exact numerical values
of a relevance map are generally meaningless. Instead, it
is the ordering of the input components according to their
relevance scores that is of importance. Let π : [d] → [d]
be a permutation that describes a relevance ordering in the
sense that π(k) is the k-th most relevant input component
and π([k]) are the k most relevant input components. This
ordering can be seen as a greedy approach to solve one of
the following two questions2 for varying ε.

Productive Formulation If we want to preserve the class
prediction Φ(x) up to a maximal distortion of D(S) ≤ ε,
which is the smallest set S of components we should fix?

The opposing formulation might be equally valid depending
on the application.

Destructive Formulation If we want to destroy the class
prediction Φ(x) with minimal distortion D(Sc) ≥ ε, which
is the smallest set S of components we should obfuscate?

2Fong & Vedaldi (2017) refer to these two formulations as a
preservation and deletion game respectively.

Though seemingly equivalent, these questions do generally
not have the same answer.3

We argue that all existing quantitative evaluation methods
for relevance maps implicitly use one of these formulations:
they are based on obfuscating or perturbing parts of the input
components that are deemed most or least relevant and mea-
sure the change in the classification score. Zeiler & Fergus
(2014) consider obfuscations by a constant baseline value,
Samek et al. (2017) use obfuscations by random values, and
Fong & Vedaldi (2017) use both types of obfuscations as
well as perturbations by blurring.

We focus on the productive formulation, where the size of
the optimal solution is described by our rate-distortion func-
tion R(ε). A good relevance ordering is one that provides
good approximations to the optimal size, when we greedily
include input components in descending order of their rele-
vance until the distortion limit is satisfied. The rate function
associated to an ordering π is thus given by

Rπ(ε) = min{ k ∈ [d] : D(π([k]) ≤ ε }.
ClearlyR(ε) ≤ Rπ(ε) holds for any ordering π. But we can
evaluate relevance maps by how well the rate function asso-
ciated to the induced relevance ordering approximates the
optimal rate R(ε). It would be desirable to obtain meaning-
ful upper bounds on the approximation error. Unfortunately,
we will see that no non-trivial approximation bound can be
given for any efficient method of calculating relevance maps.
They cannot be proven to perform systematically better than
a random ordering and do not provably find small relevant
sets, even when they exist. Nevertheless, the ordering based
rate functions Rπ can still be used for comparing different
relevance maps to each other. This results in a comparison
test very similar to the test in (Samek et al., 2017).

4. Computational Complexity
The inapproximability of small relevant sets has been shown
for binary functions, represented as Boolean circuits, and
the uniform distribution U

(
{0, 1}d

)
on {0, 1}d by Wäld-

chen et al. (2019). We generalise this result to continuous
functions, represented by neural networks, and the uniform
distribution U

(
[0, 1]d

)
on [0, 1]d. In the following we will

consider the distortion with respect to the squared difference
distance, more precisely

dist(Φ(x),Φ(y)) =
1

2
(Φ(x)− Φ(y))2.

However, our results can easily be generalised to other dis-
tance functions.

3Consider the case of redundancy, e.g. a picture with two mon-
keys that was classified as containing a monkey. In the productive
scenario it can be sufficient to include just one of the monkeys in
S, while in the destructive scenario one should try to obfuscate
both monkeys equally.

Explaining Neural Network Decisions Is Hard

4.1. Neural Network Functions

Let L ∈ N denote the number of layers of a neural net-
work, d1, . . . , dL−1 ∈ N and d0 = d, dL = 1. Further let
(W1,b1), . . . , (WL,bL) with Wi ∈ Rdi×di−1 , bi ∈ Rdi
for i ∈ [L] be weight matrices and bias vectors. From now
on we consider functions of the form

Φ(x) = WL%(. . . %(W1x + b1) . . .) + bL,

with the rectified linear unit (ReLU) activation function
%(x) = max{0, x}. A neural network Φ: [0, 1]d → [0, 1] is
said to interpolate a binary classifier Ψ: {0, 1}d → {0, 1}
if Φ restricted to {0, 1}d is equal to Ψ. We will make use
of the fact that ReLU neural networks can interpolate ar-
bitrary Boolean circuits with comparable depth and width
(Mukherjee & Basu, 2017; Parberry, 1996).

4.2. Approximating the Rate-Distortion Function

For a fixed distribution V on [0, 1]d we say that an algorithm
to calculate the rate-distortion function achieves the approx-
imation factor c ≥ 1 if for any signal x ∈ [0, 1]d, neural
network Φ: [0, 1]d → [0, 1], and distortion limit ε ∈ (0, 1]
it computes a set S of size

R(ε,Φ,x,V) ≤ |S| ≤ cR(ε,Φ,x,V),

satisfyingD(S,Φ,x,V) ≤ ε. In other words S can be larger
than the optimal sizeR(ε,Φ,x,V) by at most a factor c. The
approximation factor d can trivially be achieved by simply
taking S = [d], i.e., taking all input components as relevant.
We will show that anything beyond this is computationally
hard. There is no efficient algorithm that can do significantly
better than the trivial factor d.

Theorem 4.1. Let V = U
(
[0, 1]d

)
and assume P 6= NP.

Then for any α ∈ (0, 1] there does not exist a polynomial
time approximation algorithm for R(ε,Φ,x,V) with an ap-
proximation factor of d1−α.

We will prove this by reducing an NP-hard problem from
the binary setting considered in (Wäldchen et al., 2019) to
the problem of evaluating the rate-distortion function. Let
us quickly recall some notions from the binary case.

Definition 4.2 (Wäldchen et al., 2019). For δ ∈ (0, 1] and
γ ∈ [0, δ) the MIN-GAPPED-RELEVANT-INPUT problem
is defined as follows.

GIVEN: A Boolean circuit Ψ: {0, 1}d → {0, 1} and a
variable assignment x ∈ {0, 1}d.

FIND: k ∈ N, 1 ≤ k ≤ d such that

1. there exists a set S ⊆ [d] with |S| = k and S is
(δ − γ)-relevant for Ψ and x,

2. all sets S ⊆ [d] with |S| < k are not δ-relevant
for Ψ and x.

An algorithm for MIN-GAPPED-RELEVANT-INPUT is said
to have an approximation factor c ≥ 1 if, for any instance
{Ψ,x}, it produces an approximate solution k such that
there exists a true solution k̃ (satisfying both conditions in
Definition 4.2) with k̃ ≤ k ≤ ck̃. Wäldchen et al. (2019)
showed that for any α > 0 no polynomial time approxima-
tion algorithm for MIN-GAPPED-RELEVANT-INPUT with
approximation factor d1−α exists, unless P = NP.

The idea for the proof of Theorem 4.1 can be summarised
in a few steps: Given a Boolean circuit Ψ we choose an in-
terpolating ReLU network Φ0. For any η > 0 there exists a
fixed size ReLU network Φη that transforms the uniform dis-
tribution U

(
[0, 1]d

)
into the binary distribution U

(
{0, 1}d

)

up to a small error depending explicitly on η, such that
Φ = Φ0◦Φη still interpolates Ψ. The difference of the distor-
tions D

(
S,Φ,x,U

(
[0, 1]d

))
and D

(
S,Ψ,x,U

(
{0, 1}d

))

can be shown to depend explicit on η as well. Moreover, the
binary distortion is directly related to the probability lower
bounded by δ in Definition 2.1. Thus, it can be shown that
for the right choice of η any approximation algorithm for the
rate-distortion function would also be an approximation al-
gorithm for the MIN-GAPPED-RELEVANT-INPUT problem
with the same approximation factor. The inapproximability
result in (Wäldchen et al., 2019) thus carries over to the
continuous setting.

For brevity, we introduce the notation

Db
Φ,x(S) = D

(
S,Φ,x,U

(
{0, 1}d

))
,

Dc
Φ,x(S) = D

(
S,Φ,x,U

(
[0, 1]d

))
,

for the binary and the continuous distortion respectively.
For 0 < η ≤ 1 we set Φη(x) = ϕ

(
1
η

(
x− 1−η

2 1d
))

with

ϕ(x) =

0, x ≤ 0,

x, 0 < x ≤ 1,

1, x > 1,

and observe that Φη interpolates the identity on {0, 1}d and
can be realised by two ReLU layers of size O(d).

Before we come to the main proof we state two more useful
results.
Lemma 4.3. Let Ψ: {0, 1}d → {0, 1} and x ∈ {0, 1}d.
Then for any S ⊆ [d] we have

Py∼U({0,1}d)[Ψ(y) = Ψ(x) |yS = xS] = 1− 2Db
Ψ,x(S).

Lemma 4.4. Let Ψ: {0, 1}d → {0, 1} and x ∈ {0, 1}d.
Then for any Φ0 : [0, 1]d → [0, 1] interpolating Ψ, S ⊆ [d],
and 0 < η ≤ 1 we have for Φ = Φ0 ◦ Φη that

Db
Φ,x(S) = Db

Φ0,x(S) = Db
Ψ,x(S)

as well as
∣∣Dc

Φ,x(S)−Db
Ψ,x(S)

∣∣ ≤ dη

2
.

Explaining Neural Network Decisions Is Hard

Both Lemmas 4.3 and 4.4 follow from straight forward cal-
culations. The full proofs can be found in the supplementary
material. We now come to the proof of the main theorem.

Proof of Theorem 4.1. Let δ ∈ (0, 1], γ ∈ [0, δ), and
{Ψ,x} be an instance of MIN-GAPPED-RELEVANCE-
INPUT. Let Φ0 : [0, 1]d → [0, 1] be a neural network
that interpolates Ψ, set η = γ

2d , Φ = Φ0 ◦ Φη, and
ε = 1

2

(
1− δ + γ

2

)
. We show that R

(
ε,Φ,x,U

(
[0, 1]d

))

is a solution for the MIN-GAPPED-RELEVANCE-INPUT
problem instance {Ψ,x}, i.e., it fulfils both conditions in
Definition 4.2. To see this, let

S∗ = argmin
{
|S| : S ⊆ [d], D

(
S,Φ,x,U

(
[0, 1]d

))
≤ ε
}
,

and hence |S∗| = R
(
ε,Φ,x,U

(
[0, 1]d

))
.

Lemma 4.4 yields

1− 2Db
Ψ,x(S∗) ≥ 1− 2

(
Dc

Φ,x(S∗) +
dη

2

)

≥ 1− 2ε− γ

2
= δ − γ,

and together with Lemma 4.3 we get

Py∼U({0,1}d)[Ψ(y) = Ψ(x) |yS∗ = xS∗] ≥ δ − γ,

showing that the first condition in Definition 4.2 is satisfied.

Similarly, for any S with |S| < R
(
ε,Φ,x,U

(
[0, 1]d

))
we

know D
(
S,Φ,x,U

(
[0, 1]d

))
> ε. Thus by Lemma 4.4

1− 2Db
Ψ,x(S) ≤ 1− 2

(
Dc

Φ,x(S)− dη

2

)

< 1− 2ε+
γ

2
= δ,

and again using Lemma 4.3 we obtain

Py∼U({0,1}d)[Ψ(y) = Ψ(x) |yS = xS] < δ,

showing that the second condition in Definition 4.2 is satis-
fied as well.

Hence, any algorithm approximating the rate-distortion func-
tion R

(
ε,Φ,x,U

(
[0, 1]d

))
can also be used as an approx-

imation algorithm for MIN-GAPPED-RELEVANT-INPUT
with the same approximation factor. For the latter it is
known that achieving the factor d1−α is NP-hard for any
α > 0, which completes the proof.

This is a worst-case analysis that does not imply that the
task is infeasible in practical applications. Many nonlinear
optimisation problems are NP-hard in general and yet per-
formed successfully on a regular basis. But performance
guarantees cannot be proven as long as the neural networks

considered are powerful enough to represent arbitrary logi-
cal functions, which is the case for ReLU networks.

This still leaves the option of more subtle restrictions on the
neural networks and the inputs that depend on the actual
data structures on which the networks have been trained.
These, however, are not yet well enough understood. As
long as this is the case we have to rely on heuristic solution
strategies. We will briefly discuss a possible approach in the
next section.

5. Continuous Rate-Distortion Explanations
Finding the optimal partition into S and Sc for varying
distortion limits D(S) ≤ ε is a hard combinatorial optimi-
sation problem. As discussed before, the component order-
ings obtained from continuous relevance scores can serve as
greedy approximations. Macdonald et al. (2019) introduced
a heuristic algorithm to obtain such scores for ReLU neural
networks, which is based on a continuous relaxation of the
problem of finding small δ-relevant sets. Instead of binary
relevance decisions (relevant versus non-relevant) encoded
by the set S, it determines a continuous relevance score for
each component, encoded by a vector s ∈ [0, 1]d. This leads
to a box-constrained optimisation problem

minimise D(s)+λ‖s‖1 subject to s ∈ [0, 1]d (2)

with a regularisation parameter λ > 0 penalising the “size”
of s (in correspondence to the set size |S|) and balancing it
against the distortion D(s). The evaluation of the expected
value in the distortion functional can be achieved through
assumed density filtering (ADF), which has recently also
been used for ReLU neural networks in the context of uncer-
tainty quantification (Gast & Roth, 2018). The optimisation
problem (2) is then solved via (projected) gradient descent
or L-BFGS-B (Byrd et al., 1995). This approach to obtain-
ing relevance scores for classifier decisions is called RDE
(Rate-Distortion Explanation), and we refer to (Macdonald
et al., 2019) for details.

6. Comparison Methods
RDE is strongly motivated by the formulation of δ-relevance
and clearly aims at answering the questions Q1 and Q2.
But it remains, like all other efficient relevance mapping
methods, a heuristic that can not provably achieve this goal
in all situations. Thus, a post-hoc evaluation of relevance
mappings as well as a comparison of different methods is
recommended.

We advocate for a quantitative analysis complementing the
visual evaluation of relevance maps, as also done in (Samek
et al., 2017; Fong & Vedaldi, 2017). Relevance maps coin-
cide with human intuition only if the relevance algorithm
performs correctly and the network has learned precisely

Explaining Neural Network Decisions Is Hard

the reasoning a human would use, which is unclear in many
circumstances. In fact, the relevance method should be eval-
uated on quantitative terms and then be used to access the
reasoning of neural networks.

In addition to the quantitative evaluation and comparison
tests in (Samek et al., 2017; Fong & Vedaldi, 2017), we
propose to use designed classifiers and synthetic data as
baseline tests. Here, as a proof of concept, we evaluate the
performance of several methods for a classification task on
synthetic binary string data, where the optimal relevant sets
are known.

We compare RDE to SmoothGrad4 (Smilkov et al., 2017),
SHAP5 (Lundberg & Lee, 2017), and LIME6 (Ribeiro et al.,
2016).

6.1. Synthetic Binary Strings

As a baseline, we propose to test relevance mapping meth-
ods on a synthetic binary classification task. We consider
the Boolean function

Ψ: {0, 1}d → {0, 1}, x 7→
d−k+1∨

i=1

i+k−1∧

j=i

xj ,

that checks binary strings of length d for the existence of a
block of k consecutive ones.

If an input signal x contains a unique set of k consecutive
ones, then it is clear that these variables are relevant for
the classification. More precisely, the smallest rate that can
achieve distortion zero is k and in fact any set S containing
the block of k consecutive ones will achieve it. On the other
hand any smaller set of size |S| < k will have distortion at
least 1

2 .

We construct a ReLU neural network Φ: [0, 1]d → [0, 1]
that interpolates Ψ, see the supplement for details. Relying
on the connection between the binary and continuous setting
established in Section 4 we expect that a relevance mapping
method should also find the block of k consecutive ones as
most relevant for Φ.

We test this for two input signals of size d = 16 each
containing a block of k = 5 consecutive ones. The first has
no disjoint other group of five consecutive variables that
is even close to being a block of ones, see Figure 2. The
second also has a disjoint second group of five consecutive
variables that almost forms a block of ones (four of the five
are ones), see Figure 3.

RDE, SHAP, and SmoothGrad identify the correct block as
relevant in both cases, whereas LIME identifies the correct

4https://github.com/albermax/innvestigate
5https://github.com/slundberg/shap
6https://github.com/marcotcr/lime

x 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SmoothGrad

SHAP

LIME

RDE

Figure 2. Relevance mappings generated by several methods for
a binary string containing a block of five consecutive ones. The
colourmap indicates positive relevances as red and negative rele-
vances as blue. All methods clearly identify the correct block as
relevant.

x 0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SmoothGrad

SHAP

LIME

RDE

Figure 3. Relevance mappings generated by several methods for a
binary string containing a complete and an incomplete block of five
consecutive ones. The colourmap indicates positive relevances as
red and negative relevances as blue. RDE, SHAP and SmoothGrad
identify the correct block as most relevant. For SmoothGrad the
distinction from the incomplete block is less pronounced.

block in the first case but gets distracted by the incomplete
block in the second case, see Figures 2 and 3. Experiments
comparing these (and many more) methods on image classi-
fication tasks can be found in (Macdonald et al., 2019).

7. Conclusion
We extended the concept of δ-relevance, a probabilistic
version of prime implicants, from a binary to a continuous
setting. The resulting rate-distortion framework allows us to
formulate a concrete objective that relevance maps should
solve and to analyse the complexity of this problem. We
proved that in the worst case it is hard to solve and even
hard to approximate, which justifies the use of heuristic
explanation methods in practical applications.

Acknowledgements
J. M. and S. W. acknowledge support by DFG-GRK-2260
(BIOQIC). S. H. is grateful for support by CRC/TR 109
“Discretization in Geometry and Dynamics”. G. K. acknowl-
edges partial support by the Bundesministerium für Bil-
dung und Forschung through the “Berliner Zentrum für Ma-
chinelles Lernen”, by the Deutsche Forschungsgemeinschaft
through Grants CRC 1114 “Scaling Cascades in Complex
Systems”, CRC/TR 109 “Discretization in Geometry and
Dynamics”, DFG-GRK-2433 (DAEDALUS), DFG-GRK-

Explaining Neural Network Decisions Is Hard

2260 (BIOQIC), SPP 1798 “Compressed Sensing in Infor-
mation Processing” (CoSIP), by the Berlin Mathematics Re-
search Centre MATH+, and the Einstein Foundation Berlin.

References
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,

K.-R., and Samek, W. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance
propagation. PLOS ONE, 10(7):1–46, 07 2015. doi:
10.1371/journal.pone.0130140.

Brown, T. B., Mané, D., Roy, A., Abadi, M., and Gilmer, J.
Adversarial patch. CoRR, abs/1712.09665, 2017. URL
http://arxiv.org/abs/1712.09665.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. A limited
memory algorithm for bound constrained optimization.
SIAM Journal on Scientific Computing, 16(5):1190–1208,
1995. doi: 10.1137/0916069.

Fong, R. C. and Vedaldi, A. Interpretable explanations of
black boxes by meaningful perturbation. In Proceed-
ings of the IEEE International Conference on Computer
Vision, pp. 3429–3437, 2017.

Gast, J. and Roth, S. Lightweight probabilistic deep net-
works. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3369–3378, June
2018. doi: 10.1109/CVPR.2018.00355.

Liu, X., Yang, H., Liu, Z., Song, L., Li, H., and Chen, Y.
Dpatch: An adversarial patch attack on object detectors.
arXiv preprint arXiv:1806.02299, 2018.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30, pp. 4765–4774. Curran Asso-
ciates, Inc., 2017.

Macdonald, J., Wäldchen, S., Hauch, S., and Kutyniok, G. A
rate-distortion framework for explaining neural network
decisions. arXiv e-prints, art. arXiv:1905.11092, May
2019.

Marquis, P. Extending abduction from propositional to first-
order logic. In International Workshop on Fundamentals
of Artificial Intelligence Research, pp. 141–155. Springer,
1991.

Marquis, P. Consequence finding algorithms. In Kohlas,
J. and Moral, S. (eds.), Handbook of Defeasible Reason-
ing and Uncertainty Management Systems: Algorithms
for Uncertainty and Defeasible Reasoning, pp. 41–145.
Springer Netherlands, Dordrecht, 2000. ISBN 978-94-
017-1737-3. doi: 10.1007/978-94-017-1737-3_3.

Mukherjee, A. and Basu, A. Lower bounds over boolean
inputs for deep neural networks with relu gates. arXiv
preprint arXiv:1711.03073, 2017.

Parberry, I. Circuit complexity and feedforward neural
networks. Hillsdale, NJ: Lawrence Erlbaum, 1996.

Ribeiro, M. T., Singh, S., and Guestrin, C. "why should I
trust you?": Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, pp. 1135–
1144, 2016.

Samek, W., Binder, A., Montavon, G., Lapuschkin, S., and
Müller, K.-R. Evaluating the visualization of what a deep
neural network has learned. IEEE Transactions on Neural
Networks and Learning Systems, 28(11):2660–2673, 11
2017. ISSN 2162-237X. doi: 10.1109/TNNLS.2016.
2599820.

Shapley, L. S. A value for n-person games. In Kuhn, H. W.
and Tucker, A. W. (eds.), Contributions to the Theory
of Games II, pp. 307–317. Princeton University Press,
Princeton, 1953.

Shih, A., Choi, A., and Darwiche, A. A symbolic approach
to explaining bayesian network classifiers. In Proceedings
of the 27th International Joint Conference on Artificial In-
telligence, IJCAI’18, pp. 5103–5111. AAAI Press, 2018.
ISBN 9780999241127.

Shrikumar, A., Greenside, P., and Kundaje, A. Learning
important features through propagating activation dif-
ferences. CoRR, abs/1704.02685, 2017. URL http:
//arxiv.org/abs/1704.02685.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep in-
side convolutional networks: Visualising image clas-
sification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Smilkov, D., Thorat, N., Kim, B., Viégas, F. B., and Wat-
tenberg, M. Smoothgrad: removing noise by adding
noise. CoRR, abs/1706.03825, 2017. URL http:
//arxiv.org/abs/1706.03825.

Wäldchen, S., Macdonald, J., Hauch, S., and Kutyniok, G.
The computational complexity of understanding network
decisions. arXiv e-prints, art. arXiv:1905.09163, May
2019.

Zeiler, M. D. and Fergus, R. Visualizing and understanding
convolutional networks. In Fleet, D., Pajdla, T., Schiele,
B., and Tuytelaars, T. (eds.), Computer Vision – ECCV
2014, pp. 818–833, Cham, 2014. Springer International
Publishing. ISBN 978-3-319-10590-1.

Supplementary Material for
“Explaining Neural Network Decisions Is Hard”

Jan Macdonald 1 Stephan Wäldchen 1 Sascha Hauch 1 Gitta Kutyniok 1 2

A. Proof of Lemma 4.3
Lemma. Let Ψ: {0, 1}d → {0, 1} and x ∈ {0, 1}d. Then for any S ⊆ [d] we have

Py∼U({0,1}d)[Ψ(y) = Ψ(x) |yS = xS] = 1− 2Db
Ψ,x(S).

Proof. The claim follows directly from the definition of Db
Ψ,x. We have

Db
Ψ,x(S) =

1

2
Ey∼U({0,1}d)

[
(Ψ(y)−Ψ(x))2

∣∣yS = xS
]

=
1

2
Py∼U({0,1}d)[Ψ(y) 6= Ψ(x) |yS = xS]

=
1

2

(
1− Py∼U({0,1}d)[Ψ(y) = Ψ(x) |yS = xS]

)

and thus
Py∼U({0,1}d)[Ψ(y) = Ψ(x) |yS = xS] = 1− 2Db

Ψ,x(S).

B. Proof of Lemma 4.4
Lemma. Let Ψ: {0, 1}d → {0, 1} and x ∈ {0, 1}d. Then for any Φ0 : [0, 1]d → [0, 1] interpolating Ψ, S ⊆ [d], and
0 < η ≤ 1 we have for Φ = Φ0 ◦ Φη that

Db
Φ,x(S) = Db

Φ0,x(S) = Db
Ψ,x(S)

as well as ∣∣Dc
Φ,x(S)−Db

Ψ,x(S)
∣∣ ≤ dη

2
.

Proof. The first part of the claim follows directly from the fact that both Φ0 and Φ = Φ0 ◦ Φη interpolate Ψ.

For the second part we consider the event

CS =

{
y ∈ [0, 1]d : ∃i ∈ Sc such that yi ∈

(
1− η

2
,

1 + η

2

)}
,

and observe that
Py∼U([0,1]d)[y ∈ CS] = 1− (1− η)d−|S|.

1Institut für Mathematik, Technische Universität Berlin, Berlin, Germany 2Department of Physics and Technology, University of
Tromsø, Tromsø, Norway. Correspondence to: Jan Macdonald <macdonald@math.tu-berlin.de>, Stephan Wäldchen <stephanw@math.tu-
berlin.de>.

Presented at the XXAI Workshop, 37 th International Conference on Machine Learning (ICML), 2020. Copyright 2020 by the author(s).

Supplementary Material for “Explaining Neural Network Decisions Is Hard”

Using the abbreviated notation

AS = Ey∼U([0,1]d)

[
(Φ(y)− Φ(x))2

∣∣yS = xS ,y ∈ CS
]

BS = Ey∼U([0,1]d)

[
(Φ(y)− Φ(x))2

∣∣yS = xS ,y /∈ CS
]

we can split the expectation value in the continuous distortion term as

Dc
Φ,x(S) =

1

2
Ey∼U([0,1]d)

[
(Φ(y)− Φ(x))2

∣∣yS = xS
]

=
1

2
ASPy∼U([0,1]d)[y ∈ CS] +

1

2
BSPy∼U([0,1]d)[y /∈ CS]

=
1

2
AS

(
1− (1− η)d−|S|

)
+

1

2
BS(1− η)d−|S|.

For the second term, we get

BS = Ey∼U([0,1]d)

[
(Φ0 ◦ Φη(y)− Φ0 ◦ Φη(x))2

∣∣yS = xS ,y /∈ CS
]

= Ey∼U({0,1}d)

[
(Φ0(y)− Φ0(x))2

∣∣yS = xS
]

= Ey∼U({0,1}d)

[
(Ψ(y)−Ψ(x))2

∣∣yS = xS
]

= 2Db
Ψ,x(S),

where the second equality follows from the choice of Φη and y /∈ CS and the third equality follows from the fact that Φ0

interpolates Ψ. Thus, we conclude

Dc
Φ,x(S) =

1

2
AS

(
1− (1− η)d−|S|

)
+Db

Ψ,x(S)(1− η)d−|S|

= Db
Ψ,x(S) +

1

2

(
1− (1− η)d−|S|

)
(AS −BS)

which using Bernoulli’s inequality and 0 ≤ AS , BS ≤ 1 finally results in

∣∣Dc
Φ,x(S)−Db

Ψ,x(S)
∣∣ ≤ 1

2

(
1− (1− η)d−|S|

)
≤ (d− |S|)η

2
≤ dη

2
.

C. Choice of the Reference Distribution
C.1. Non-Uniform Distributions

We use the uniform distribution U
(
[0, 1]d

)
as a reference or baseline distribution V in our proof for the hardness result on

approximating the rate distortion function. This can easily be extended to more general probability measures µ on [0, 1]d.
We can choose µ as a product of any independent one-dimensional measures µi for the individual input components as long
as for every i ∈ [d] and 0 < η ≤ 1 there exist lower and upper thresholds ai, bi ∈ [0, 1] with ai < bi such that

µi((−∞, ai]) = µi([bi,∞)) and µi([ai, bi]) ≤ η,

which is possible for all probability measures on [0, 1] without point masses, such as truncated Gaussian or exponential
distributions. In that case we simply have to adapt the function Φη as ϕ((x− a)� (b− a)) and proceed with the remaining
proof as before (here � denotes component-wise division).

C.2. Conditional versus Marginal Distributions

We want to make another remark regarding the choice of the distributions VS used in our rate distortion framework. We
define the obfuscation y to be deterministically given by yS = xS on S and distributed according to ySc = nSc with
n ∼ V on the complement Sc. This means that the resulting distribution VS of y corresponds to V marginalised over all
components in S. One might be tempted to condition on the given components xS instead of marginalising. But this could
actually be detrimental to uncover how the classifier operates. Let us illustrate this with an example. Consider a classifier
that is trained to detect ships, but actually only learned to detect the water surrounding the ship, as in (Lapuschkin et al.,

Supplementary Material for “Explaining Neural Network Decisions Is Hard”

2016). The classifier can achieve high accuracy as long as the data set only contains ships on water and no other objects
surrounded by water. Now assume we have a relevance map selecting a subset of pixels showing a ship as relevant. If we
complete the rest of the image with random values from a conditional distribution, we will most likely see water in the
completion, as most images with a ship will also have water surrounding it. The classifier would correctly classify the
completed image with high probability. The potentially small subset of pixels containing the ship will thus give a small
distortion and will be considered relevant. However, this result is not useful to uncover the underlying workings of the
network. It does not tell us that the network does not recognise ships but only the surrounding water. Using a very data
adapted and restricted conditional distribution compensates the shortcoming of the network. That is why we advocate for
using a less data adapted marginal distribution. In fact, we believe that using maximally uninformed distributions like
uniform or truncated Gaussian distributions is beneficial for uncovering the network’s reasoning.

D. Description of the Synthetic Binary Strings Experiment
Network Architecture Recall that the underlying binary classifier is given by the Boolean function

Ψ: {0, 1}d → {0, 1}, x 7→
d−k+1∨

i=1

i+k−1∧

j=i

xj ,

that checks binary strings of length d for the existence of a block of k consecutive ones. A ReLU network with two hidden
layers that interpolates Ψ can be constructed as

Φ(x) = W3% (W2%(W1x + b1) + b2) + b3

with

W1 =

i+k−1∑

j=i

eTj

d−k+1

i=1

∈ R(d−k+1)×d and b1 = −(k − 1) · 1d−k+1 ∈ Rd−k+1,

W2 = −1>d−k+1 ∈ R1×(d−k+1) and b2 = 1 ∈ R1,

W3 = −1 ∈ R1×1 and b3 = 1 ∈ R1,

where ej is the j-th unit vector in Rd. This network is purely constructed and not trained on any data. We use d = 16 and
k = 5 in our experiment.

RDE Optimisation For the RDE optimisation we used the regularisation parameter λ = 1.67 · 10−3 and solved the
resulting box-constrained optimisation problem via L-BFGS-B (Byrd et al., 1995).

The initial guess was simply chosen as the mean of U
(
[0, 1]d

)
and not further tuned. As reference distribution V we used

the Gaussian distribution with mean and variance equal to the mean and variance of U
(
[0, 1]d

)
. To estimate a good value for

the regularisation parameter λ we solved the RDE optimisation problem for values λ = 10q with ten values of q spaced
evenly in [−5, 0]. We compared the results visually and saw that 1.67 · 10−3 yields a relevance map with a sparsity that
corresponds well to the true block size k = 5.

Comparison Methods We used the Innvestigate1 (Alber et al., 2018) toolbox for generating relevance mappings according
to SmoothGrad (Smilkov et al., 2017) with a noise scale of 0.5 and 64 noise samples. We used the SHAP2 toolbox to
generate relevance mappings according to SHAP (Lundberg & Lee, 2017) and used the DeepExplainer method
for deep network models with 1024 reference inputs drawn randomly from U

(
[0, 1]d

)
. Finally, we used the LIME3

toolbox to generate relevance mappings according to LIME (Ribeiro et al., 2016). We used the local explanations of the
LimeTabularExplainer method with 1024 reference inputs drawn randomly from U

(
[0, 1]d

)
.

1https://github.com/albermax/innvestigate
2https://github.com/slundberg/shap
3https://github.com/marcotcr/lime

Supplementary Material for “Explaining Neural Network Decisions Is Hard”

References
Alber, M., Lapuschki, S., Seegerer, P., Hägele, M., Schütt, K. T., Montavon, G., Samek, W., Müller, K., Dähne, S., and

Kindermans, P. iNNvestigate neural networks! CoRR, abs/1808.04260, 2018. URL http://arxiv.org/abs/
1808.04260.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM Journal
on Scientific Computing, 16(5):1190–1208, 1995. doi: 10.1137/0916069.

Lapuschkin, S., Binder, A., Montavon, G., Muller, K.-R., and Samek, W. Analyzing classifiers: Fisher vectors and deep
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2912–2920,
2016.

Lundberg, S. M. and Lee, S.-I. A unified approach to interpreting model predictions. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural Information Processing Systems
30, pp. 4765–4774. Curran Associates, Inc., 2017.

Ribeiro, M. T., Singh, S., and Guestrin, C. "why should I trust you?": Explaining the predictions of any classifier. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016, pp. 1135–1144, 2016.

Smilkov, D., Thorat, N., Kim, B., Viégas, F. B., and Wattenberg, M. Smoothgrad: removing noise by adding noise. CoRR,
abs/1706.03825, 2017. URL http://arxiv.org/abs/1706.03825.

