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Abstract

Contemporary learning models for computer vi-
sion are typically trained on very large data sets
with millions of samples. There may, however,
be biases, artifacts, or errors in the data that have
gone unnoticed and are exploitable by the model,
which in turn becomes a biased ‘Clever-Hans‘
predictor. In this paper, we contribute by provid-
ing a comprehensive analysis framework based
on a scalable statistical analysis of attributions
from explanation methods for large data corpora,
here ImageNet. Based on Spectral Relevance
Analysis we propose the following technical con-
tributions and resulting findings: (a) a scalable
quantification of artifactual classes where the ML
models under study exhibit Clever-Hans behav-
ior, (b) an approach denoted as Class-Artifact
Compensation (ClArC) that allows to fine-tune
an existing model to effectively eliminate its fo-
cus on artifacts and biases yielding significantly
reduced Clever-Hans behavior.

1. Introduction

Throughout the last decade, Deep Neural Networks (DNN)
have enabled impressive performance leaps on even the
most complex tasks (LeCun et al., 2015; Mnih et al., 2015;
Silver et al., 2016; Schütt et al., 2017; Krizhevsky et al.,
2012). These models are typically (pre-)trained on very
large datasets, e.g., ImageNet (Russakovsky et al., 2015),
with millions of samples. Recently, it was discovered that
biases, spurious correlations, as well as errors in the train-
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ing dataset (Stock & Cissé, 2018) may have a detrimental
effect on the training and/or result in “Clever-Hans” predic-
tors (Pfungst, 1911; Lapuschkin et al., 2019), which only
superficially solve the task they have been trained for1. Un-
fortunately, due to the immense size of today’s datasets, a
direct manual inspection and removal of artifactual sam-
ples can be regarded hopeless. However, analyzing the bi-
ases and artifacts in the model instead may provide insights
about the training data indirectly. This however requires an
inspection of the learning models beyond black box mode.

Only recently methods of explainable AI (XAI) (cf. (Samek
et al., 2019) for an overview) were developed. They pro-
vide deeper insights into how an ML classifier arrives at its
decisions and potentially help to unmask Clever-Hans pre-
dictors. XAI methods can be roughly categorized into two
groups: methods providing local (e.g. (Bach et al., 2015;
Selvaraju et al., 2017; Sundararajan et al., 2017; Shriku-
mar et al., 2017; Ribeiro et al., 2016; Zintgraf et al., 2017;
Fong & Vedaldi, 2017)) explanations and those providing
global (e.g. (Guyon & Elisseeff, 2003; Kim et al., 2018;
Rajalingham et al., 2018)) explanations (Lundberg et al.,
2019). Current approaches are of limited use when scaling
the search for biases, spurious correlations, and errors in
the training data set as that would require intense ‘seman-
tic’ human labor. A recent technique, the Spectral Rele-
vance Analysis (Lapuschkin et al., 2019) (SpRAy), aims to
bridge the gap between local and global XAI approaches,
by introducing automation into the analysis of large sets
of local explanations, however still involves a considerable
amount of manual analyses, especially in context of con-
temporary data sets with high numbers of classes and sam-
ples, such as ImageNet (Russakovsky et al., 2015).

In this paper, we propose (a) an extension to SpRAy, en-
abling large-scale analyses on data sets with hundreds of
classes and millions of samples, for semi-automated dis-

1Clever Hans was a horse from Berlin that allegedly could
do math – a media sensation from early 1900. Later in 1907 it
was discovered that Hans would read the examinator’s body lan-
guage instead, and in this manner give the right answer but for
the wrong reason, https://en.wikipedia.org/wiki/
Clever_Hans. “Clever Hans strategies” for neural networks
(Lapuschkin et al., 2019) are accordingly named as a homage to
this infamous horse.

https://en.wikipedia.org/wiki/Clever_Hans
https://en.wikipedia.org/wiki/Clever_Hans
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Figure 1. Overview of the SpRAy approach. Left: Large corpora of data can be used to train models for specific tasks. To gain insights

into local model behavior, explanation methods can be employed. Middle: Using SpRAy, one can deduce global model behavior from

a set of local explanations (see Algorithm 1 in the Supplement). Right: Based on this analysis, striking classification strategies can be

identified and further investigated. Obtained insights can be used to improve the model and/or the dataset, e.g. using ClArC.

covery of undesirable Clever-Hans effects that are embed-
ded into data and model. In addition, we provide (b) a
novel framework denoted as Class-Artifact Compensation
(ClArC), giving an intuition for Clever-Hans artifacts and
their removal from a trained model. In this manner, we
provide (c) a well-controlled quantitative strategy to detect,
validate and remove such artifacts which we showcase for
the ImageNet data corpus. These analyses allow interesting
findings that are illuminating beyond our specific technical
approach.

2. Methods

First we will discuss the ingredients for ClArC, namely,
Spectral Relevance Analysis (SpRAy) (Lapuschkin et al.,
2019), Fisher Discriminant Analysis (Fisher, 1936; Fuku-
naga, 1990), an intuition for Clever-Hans artifacts and
based on that and a procedure to remove the influence of
Clever-Hans artifacts from the respective classes.

2.1. Spectral Relevance Analysis

The SpRAy (Lapuschkin et al., 2019) is a meta-analysis
tool for finding patterns in model behavior, given sets
of instance-based explanatory attribution maps. The
SpRAy algorithm has its core in Spectral Clustering
(SC) (Meila & Shi, 2001; Ng et al., 2002) and — via the
use of attribution maps as input — enables the analysis
of the input data from the model’s perspective for find-
ing (hidden) characteristics of specific classes, as exploited
by the model. As output, SpRAy yields a spectral embed-
ding Φ of the input data and the spectrum of (eigen)values
Λ = {λi}i=1...q , which is used to analyze the structure of
clusters (i.e. cluster number and nesting) discovered in the

data, via the eigen- or spectral gap (von Luxburg, 2007),
or to rank a set of analyzed classes w.r.t. to their potential

for exhibiting Clever-Hans phenomena (Lapuschkin et al.,
2019). Due to the direct correspondence of the given inputs
to (the colums of) Φ, we use the embedding for comput-
ing visualizations in R2, e.g. via t-SNE (Maaten & Hinton,
2008) or UMAP (McInnes & Healy, 2018). An algorithmic
summary can be found in Algorithm 1 in the Supplement.

2.2. Fisher Discriminant Analysis for Clever-Hans
Identification

A critical decision in clustering approaches is the num-
ber of desired clusters. While for small datasets like Pas-
cal VOC (Everingham et al., 2007) it suffices to analyze
the per-class eigen-spectrum (Lapuschkin et al., 2019);
datasets with a large number of classes cannot be feasi-
bly analyzed by manual comparison and ranking of the
eigen-spectra of all classes to identify those exhibiting spu-
rious model behavior. In order to automate this process,
we propose Fisher Discriminant Analysis (FDA) to rank all
class-wise clusterings by their respective (linear) separabil-
ity. FDA (Fisher, 1936; Fukunaga, 1990) is a widely pop-
ular method for classification as well as class- (or cluster-)
structure preserving dimensionality reduction. FDA finds
an embedding space by maximizing between-class scatter
S(b) and minimizing within-class scatter S(w), given by

S(w) =
K
∑

k=1

∑

xi∈cK

k

(xi − µk)(xi − µk)
⊤ (1)

S(b) =
K
∑

k=1

(µk − µ)(µk − µ)⊤. (2)
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Figure 2. Logistic regression on data with, among possibly others, a discriminative signal direction and an artifact direction which is

only represented in one of the two classes. The decision-hyperplane is shown over the SGD-based training-process of 25 epochs in

shades of green, with: No Artifact: no artifact in the data; Artifact: a Clever-Hans artifact in the negative class (blue); ClArC: the

previous and the artifact-direction added to some samples of the positive class (orange); ClArC Recovery: the previous, but continuing

the training after Artifact. The introduction of an artifact to positive samples changes the decision boundary. By introducing the same

artifact direction to negatives samples, this effect can be reduced significantly.

Here, CK is a clustering with K clusters cKk with
k ∈ {1, . . . ,K}, µk the sample mean of cluster k and µ the
mean over the whole set of samples. The solution of FDA
can be understood as directions of maximal separability be-
tween clusterings, and, when normalized and plugged into
the original objective, gives scores of separability R(CK).
In our specific use-case, for each class, we compute sep-
arability scores R(CK) on the spectral embedding Φ and
each clustering CK in a set of clusterings {CK}. We then
compute the class-separability score τ as

τ =
1

|{CK}|

∑

CK

R(CK). (3)

2.3. Class-Artifact Compensation (ClArC)

Let us consider a toy model based on logistic regression
to better grasp the influence Clever-Hans artifacts on mod-
els trained with stochastic gradient descent. Intuitively,
Clever-Hans artifacts can be described as directions in the
data space, e.g. a watermark on some pixels of an image,
which manifest as shifts along artifact directions in latent
space. Figure 2 shows SGD-training over 25 epochs with,
possibly among others, a signal direction and an artifact
direction in the data.

The No Artifact setting shows the case where there are no
artifacts in the data, such that the two classes, positive and
negative, are classified only by using the signal direction,
e.g. the decision boundary is approximately perpendicular
to the signal direction. We now introduce artifactual fea-
tures to some negative examples, as shown in the Artifact

setting in Figure 2. This visibly rotates the decision bound-
ary, such that the model now also uses information along
the artifact direction. This means that, even though the ar-
tifact direction is (by design) not intended to correlate with
the label, data points with the positive label and an artifact

may be falsely predicted as negatives by the model. To bal-
ance this effect out, we can isolate the artifact direction, and
add it to some of the positive samples, which is shown in
Figure 2 ClArC. We call this approach Class-Artifact Com-

pensation (ClArC), and can see that the decision boundary
rotates back to a direction orthogonal to the signal, i.e. it
returns to ignoring the artifact direction. The ClArC Re-

covery setting shows that this training modification can be
used for fine-tuning models which were previously trained
on data containing class-limited artifacts. We use this ap-
proach in Section 3.3 to unlearn artifacts identified using
SpRAy.

3. Experiments and Evaluations

In this section, we apply our ClArC framework to the Im-
ageNet dataset. While here results based on LRP (Bach
et al., 2015) and our extended SpRAy are shown, the pro-
cedure is also readily applicable to all members of the XAI
zoo (cf. (Samek et al., 2019)); results based on SmoothGrad
(Smilkov et al., 2017) can be found in the Supplement.

3.1. Identifying Clever-Hans Candidates with FDA

As SpRAy in its original form still contained manual pro-
cessing steps, our proposed algorithm allows to scale to
many classes and samples. For this we apply FDA on each
class’ spectral embedding Φ. We report the respective clus-
ter separability scores τ (Eq. (3)). While clearly algorith-
mic alternatives to FDA are conceivable, τ quantifies sim-
ply and intuitively how much different class specific classi-
fication strategies are. Large τ denotes outlierness in prob-
lem solving — solid indicators for Clever-Hans candidates
(Lapuschkin et al., 2019) — whereas low τ does not indi-
cate any strikingly “irregular” prediction behavior. Figure 4
lists a ranking of the ImageNet classes with the highest and
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Figure 3. Each panel shows the UMAP (left) with samples and heatmaps (right) of significant clusters, highly separated from the rest

of the samples. For each class, some images and their respective attributions from the identified cluster are shown. Red dots in the

UMAPs identify the clusters the samples to the right have been grouped into. Relevance maps to the right are color coded to identify

relevant image regions supporting the classifier decision in hot colors (red to yellow) irrelevant regions in black color and relevant regions

contradicting the final prediction in cold (blue to cyan) hues. The text above the sample images shows the classifier’s top-1 predicted

class, and the prediction rank of the true label.

lowest τ values with a striking result for class laptop, due
to a large cluster with copies of almost the same image (see
UMAP of its spectral embedding with a significant cluster
is depicted in Figure 3 (bottom right)).

Figure 4. Mean separability score τ of spectral embedding of at-

tributions based on Fisher Discriminant Analysis. A high τ means

there are significantly different decision strategies being used, po-

tentially of Clever-Hans type.

Figure 5. ROC-Curves for artifact-existence versus FDA-

Ranking. Left: Top 20 classes with highest values of τ . Mid: 63

random classes with any values of τ . Right: Bottom 20 classes

with lowest values of τ .

We inspect the validity of the class ranking for Clever Hans
candidates generated by FDA in a small experiment, by
screening a subset of all 1000 ImageNet classes, namely
(1) those with the 20 highest τ scores, (2) those with the
20 lowest τ scores and (3) 63 randomly picked classes. In

all three cases, we assume a positive Clever-Hans “predic-
tion” per class due to a large value of τ . We then produce
“ground truth” labels via manual assessment of the exis-
tence of a Clever-Hans candidate. Using this information
we produce receiver operator characteristic (ROC) curves
and corresponding area under the curve (AUC) values.

The results show a clear picture validating that a high
τ score is indeed a strong indicator for the presence of
Clever-Hans phenomena (Figure 5 (left), high AUC). Both
randomly selected or bottom 20 classes (Figure 5 (mid,
right)) yield essentially random AUC scores due to only
sporadically encountered Clever-Hanses. However, the
AUC ≫ 0 here also show that even a τ rating in the lowest
2-percentile does not guarantee a class to be free of Clever-
Hans behavior. Summarizing, large τ is an excellent in-
dicator for Clever-Hans behavior, but small τ is no ulti-
mate guarantee for their absence, so further research will
be needed here to ideally bring forward indicators that can
provide a theoretical bound for absence of Clever-Hans be-
havior.

3.2. Inspecting and Isolating Clever-Hans Candidates

Based on the ordering by FDA and τ established in the pre-
vious section, we will now manually investigate whether
the Clever-Hans candidate classes show indeed the promi-
nent Clever-Hans artifacts to be expected. The SpRAy
framework provides as a side effect (through its spectral
embedding space Φ) also a basis for visualizing clusters
of heatmaps, here we use UMAP. Promising clusters are
often located far away from the rest of datapoints in the
UMAP embedding, see e.g. Figure 3 top right the UMAP
scatter-plot of class “garbage truck”, where, the red cluster-
members all show examples of images of the same water-
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Figure 6. Original (x-axis) vs. poisoned (y-axis) validation set accuracy of baseline model (red) and ClArC’ed models (blue) over

training poison rate (color shade, darker is higher). All models show a tendency towards the bottom-right, meaning the addition of

artifact candidates degrades the model performance, thus validating their Clever-Hans property. ClArC’ed models (blue) show better

performance on the poisoned validation set, implying increased robustness against Clever-Hans artifacts. A slight tendency towards the

right for ClArC’ed models can be observed, suggesting an overall better generalization.

mark with high attribution in LRP. Another intriguing ex-
ample is the top middle UMAP plot of class “stole”, where,
while not as separated as for other examples, we find a
cluster of mannequins wearing stoles, with high attribution
scores on the mannequin’s head. For further Clever-Hans
candidates, using other models and attribution methods, see
Supplement.

To test whether Clever-Hans candidate clusters indeed in-
fluence the model, we first isolate the artifact v and then
blend the artifact onto the image to stay within pixel-
domain and achieve better results. Specifically, we com-
pute the pixel-wise mean over all affected samples ci as
RGB information v = 1

C

∑C
i ci and use an alpha channel

inversely proportional to the pixel-wise standard deviation

α ∝
√

1
C

∑C
i (c− ci)2

−1

. For more elaborate artifacts

like the mannequin head, it is also possible to use a manual
approach to extract v and α. The isolated artifact v can then
be applied freely to other samples pi with

c̄i = (1− α)⊙ pi + α⊙ v (4)

where ⊙ is the element-wise product, and the Clever-Hans
effect can be compensated accordingly; see next section for
a comprehensive validation using ClArC.

3.3. Validating and Un-Hans’ing the Model by
Class-Artifact Compensation

Setup We will now apply ClArC for each detected
Clever-Hans candidate artifact for a certain class: In ad-
dition to the artifact candidate class, we choose 19 other
random classes from the ImageNet training set. Then we
fine-tune a pre-trained model, here VGG16 (Simonyan &
Zisserman, 2014), for 60 training epochs during which we
add the artifact candidate following ClArC (see Eq.(4)), to
each sample of the non-candidate classes with probability
p, where p ∈ {0, 0.1, . . . , 0.5}. The setup p = 0 serves as

a baseline, where no artifact is added during training. Sub-
sequently we prepare two validation sets, each only of the
involved 20 classes. One is based on the original ImageNet
validation set, the other is a poisoned version of it, where
we add the artifact to 100% of the samples. The underlying
hypotheses is the following: cleaning the data with ClArC
and subsequent fine tuning of the VGG16 model will make
the model disregard the Clever Hans strategy. We therefore
expect the CLArC’ed models to exhibit stable generaliza-
tion performance even if the artifact is not present. Con-
versely, the unchanged model is expected to show (due to
its Clever Hans strategy) a drop in performance from the
original to the poisoned version of the ImageNet validation
set.

Validation Figure 6 shows scatter plots per class exam-
ples of all model accuracies, with original validation set
results (x-axis) versus results on the poisoned validation
set (y-axis). For all training setups, including the baseline,
models show a significant tendency towards the bottom-
right of the plot. This indicates that the Clever-Hans strat-
egy was correctly identified as we observe a better perfor-
mance on the original validation set (giving the correct an-
swer for the ’wrong’ Clever- Hans artifact-driven reason).
If this artifactual clue is removed from the data (by using
the poisoned validation set), then the prediction error of
the CLArC’ed model remains virtually unchanged whereas
the baseline model using a Clever Hans strategy shows sig-
nificantly increased errors. This validates the Clever-Hans
candidates as actual Clever-Hans strategies (ab)used by the
model and confirms the above hypothesis.

Un’hansing By further inspection of the validation accu-
racies in Figure 6, we can observe a clear general trend
of the ClArC’ed model’s poisoned validation accuracies
(blue) above the baseline model’s poisoned validation ac-
curacies (red). Furthermore, there is no indication of an
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unmodified fine-tuning

ClArC fine-tuning

Figure 7. Left: Input-sample affected by an identified Clever-Hans artifact, with programmatically isolated artifact below. Right: Attri-

bution maps illustrating the model’s use of input features after 1, 5, and 10 (left to right) epochs of unmodified (top) and ClArC (bottom)

fine-tuning in direct comparison.

inferior performance of ClArC’ed models compared to the
baseline models on the original validation set as all point
lie below the diagonal. Instead, we can even see a slightly
increased performance. This signifies not only an increased
robustness against respective Clever-Hans artifacts, but in-
terestingly suggests an overall better generalization of the
ClArC’ed model.

By inspecting and comparing model attributions over the
training iterations given in Figure 7, we can observe a clear
focus on the artifact (watermark) which is being fully elim-
inated in the ClArC’ed model, as opposed to the essen-
tially unchanged baseline model. We can even observe the
ClArC’ed model in the same instance increasing its focus
on the cargo-container of the garbage truck, suggesting that
the model could achieve a better understanding of the ob-
ject itself. Additional experiments and observations with
various artifacts on different models with analogous out-
comes can be found in the supplement.

4. Conclusion

Deep Learning models have gained high practical usabil-
ity by pre-training on large corpora and then reusing the
learned representation for transferring to novel related data.
A prerequisite for this practice is the availability of large
corpora of rather standardized and, most importantly, rep-
resentative data. If artifacts or biases are present in data
corpora, then the representations formed are prone to in-
herit these flaws. This is clearly to be avoided, however,
it requires either clean data or detection and subsequent
removal of the influence of artifacts, biases etc. of data
bases that would cause dysfunctional representation learn-
ing. In this paper we have used explanation methods (e.g.
LRP (Bach et al., 2015) and SmoothGrad (Smilkov et al.,
2017), for an overview see (Samek et al., 2019; Montavon
et al., 2018)) and introduced the ClArC framework to scal-
ably and automatically detect, validate and alleviate Clever
Hans behaviour in the ImageNet corpus. While we mainly

used LRP and SmoothGrad (see Supplement), the proposed
ClArC framework is independent of the particular XAI
method. ClArC encompasses a first simple intuitive model
of how artifacts may harm generalization. As this intuitive
model is based on logistic regression, it is rather crude, but
it already shows the main effects caused by artifacts: de-
terioration of generalization ability. For neural networks it
may, however, still serve as a reasonable guideline and in-
deed our large-scale experiments on ImageNet show analo-
gous effects, that can exhibit a dramatic drop of generaliza-
tion for some classes (see Fig. 6). Interestingly un-Hansing
is shown to provide uniformly better generalization ability.

Let us reiterate that without removing, or at least consider-
ing such data artifacts, learning models are prone to adopt
Clever-Hans strategies (Lapuschkin et al., 2019), thus, giv-
ing the correct prediction for an artifactual/wrong reason.
Once these artifacts are absent in the wild such Clever-
Hans models will experience significant loss in generaliza-
tion (see Fig. 6). This makes them especially vulnerable
to adversarial attacks that can harvest all such artifactual
issues in a data corpus (Carlini & Wagner, 2017).

Future work will therefore focus on the important in-
tersection between security and functional cleaning of
data corpora, e.g., to lower the attack risk when building on
top of pre-trained models. In addition we will explore im-
provements in detecting potentially compromised classes
beyond FDA.

Acknowledgement

We thank the reviewer for their constructive feedback. We
acknowledge Pan Kessel for invaluable discussions. This
work was supported in part by the German Ministry for Ed-
ucation and Research (BMBF) under Grants 01IS14013A-
E, 01GQ1115, 01GQ0850, 01IS18025A and 01IS18037A.
This work is also supported by the Information & Commu-
nications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (No. 2017-0-001779),



XAI for Analyzing and Unlearning Spurious Correlations in ImageNet

as well as by the Research Training Group ”Differential
Equation- and Data-driven Models in Life Sciences and
Fluid Dynamics (DAEDALUS)” (GRK 2433) and Grant
Math+, EXC 2046/1, Project ID 390685689 both funded
by the German Research Foundation (DFG).

References

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,
K.-R., and Samek, W. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance
propagation. PLoS ONE, 10(7):e0130140, 2015. doi: 10.
1371/journal.pone.0130140. URL http://dx.doi.

org/10.1371/journal.pone.0130140.

Carlini, N. and Wagner, D. Towards evaluating the robust-
ness of neural networks. In 2017 IEEE Symposium on

Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Cuturi, M. and Doucet, A. Fast computation of wasser-
stein barycenters. In International Conference on Ma-

chine Learning (ICML), pp. 685–693, 2014.

Everingham, M., Gool, L., Williams, C., Winn,
J., and Zisserman, A. The pascal vi-
sual object classes challenge results. URL:

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

workshop/everingham cls.pdf, 2007.

Fisher, R. A. The use of multiple measurements in tax-
onomic problems. Annals of eugenics, 7(2):179–188,
1936.

Fong, R. C. and Vedaldi, A. Interpretable explanations
of black boxes by meaningful perturbation. In Proc.

of IEEE International Conference on Computer Vision

(ICCV), pp. 3449–3457, 2017. doi: 10.1109/ICCV.2017.
371. URL https://doi.org/10.1109/ICCV.

2017.371.

Fukunaga, K. Chapter 1 - introduction. In Introduction to

statistical pattern recognition. Academic Press Profes-
sional, Inc., Boston, 1990. ISBN 978-0-08-047865-4.

Guyon, I. and Elisseeff, A. An introduction to variable and
feature selection. Journal of machine learning research,
3(Mar):1157–1182, 2003.

Huang, G., Liu, Z., van der Maaten, L., and Wein-
berger, K. Q. Densely connected convolutional net-
works. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2017, Honolulu, HI,

USA, July 21-26, 2017, pp. 2261–2269, 2017. doi:
10.1109/CVPR.2017.243. URL https://doi.org/

10.1109/CVPR.2017.243.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C. J., Wexler,
J., Viégas, F. B., and Sayres, R. Interpretability beyond
feature attribution: Quantitative testing with concept ac-
tivation vectors (TCAV). In Proc. of International Con-

ference on Machine Learning (ICML), pp. 2673–2682,
2018. URL http://proceedings.mlr.press/

v80/kim18d.html.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagennet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems

(NIPS), pp. 1097–1105, 2012.
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5. Supplement

We state the pipeline of our experiments using pseudo-code
in Section 5.1. Furthermore, we complement our findings
from our manuscript by analyzing artifacts on different ar-
chitectures in Section 5.2, showing additional results for
ClArC’ed model performance in Section 5.3 with qualita-
tive attribution analysis in 5.4, more Clever-Hans candi-
dates with LRP in Section 5.5 and with SmoothGrad in
Section 5.6, analyze qualitatively and quantitatively the ef-
fects of adding and removing artifacts to samples in Section
5.7 and present the observation that the same artifacts can
(obviously) also be found in the original validation set in
Section 5.8. Finally, we explore using different distance
metrics, i.e. Wasserstein Distance, with SpRAy in Section
5.9.

5.1. Algorithms for Experiments in Section 3

Algorithm 1: Extended Spectral Relevance Analysis

Data: Input class y,
Training data set Xy = {x1, x2, ..., xi} with samples
from class y,
Model f operating on Xy

Result: Eigenvalues Λ = {λ},
Spectral embeddings Φ ∈ Rn×q ,
Clusterings K,
Mean separability score τ ,
Visualization embeddings V ∈ R2

/* compute attributions for x ∈ Xy,

e.g. LRP */

1 R = {};
2 for x ∈ Xy do
3 Rx = attribution(f, x);
4 R.append(Rx);
5 end

/* Spectral Relevance Analysis */

6 Φ,Λ,K = SpRAy(R);
/* Compute separability scores given

by Fisher Discriminant Analysis

*/

7 for C ∈ K do

8 SC = FDA(Φ,C);
9 end

/* Compute mean separability score

[Eq. (3)] */

10 τ = 1

|K|

∑
C∈K

SC;

/* Compute visualizations for the

embedding, e.g. t-SNE, UMAP,

etc. */

11 V = visualize embedding(Φ);
12 return Λ,Φ,K, τ, V

Algorithm 2: ClArC Un-hans’ing of a model.

Data: Training data set
X = {(x1, y1), (x2, y2), ..., (xi, yi)},
Model f operating on X ,
Number of epochs ne,
Learning rate η,
Artifacts A = {a1, a2, ..., aj},
Poison rates p.
Result: Un-hans’ed model f ′

/* Un-hans the model f */

1 f ′ ← f ;
2 for e ∈ 1..ne do

3 for (x, y) ∈ X do

/* Apply [Eq. (4)] all artifacts

a with poison rate p */

4 x′ ← x;
5 for a ∈ A do
6 x′ ← apply artifact(x′, a, p);
7 end

/* Perform one round of

gradient descent using Adam

*/

8 f ′ ← train(f ′, η, x′, y);
9 end

10 end
11 return f ′

Algorithm 1 shows the full pipeline of our extended ver-
sion of SpRAy to ImageNet. It takes a subset Xy of the full
training data set X that only contains samples of class y, as
well as a model f as input. It first computes the attributions
for all samples in Xy , e.g. using LRP. Then, it performs the
original SpRAy algorithm on it, which generates the spec-
tral embeddings Φ, the eigenvalues Λ, and the clusterings
K.

5.2. ImageNet Artifacts across Different
DNN-Architectures

In Section 3.2 we describe a series of systematic prediction
biases discovered using the SpRAy technique for several
affected classes. In all these cases, the downloaded VGG-
16 model has overfit on input features which are character-
istic for certain object classes in context of the ImageNet
dataset. We thus assume that other neural network archi-
tectures sharing the same data source for training may also
share certain Clever-Hans strategies with the investigated
VGG-16 classifier.

Figure S1 exemplarily shows LRP heatmaps computed
for the VGG-19 (Simonyan & Zisserman, 2014) and the
DenseNet-121 (Huang et al., 2017) model — which have
also been downloaded as pre-trained predictors optimized
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on the ImageNet data corpus — for samples which exhibit
data artifacts as discovered for the VGG-16 model. We no-
tice that both the architecturally very similar VGG-16 and
VGG-19 architectures heatmaps are very concentrated on
shape features such as edges and color-gradient rich im-
age areas. The heatmaps computed for the DenseNet-121
model on the other hand are much more focused on class-
and object-specific textures and colors. For all investigated
samples, we however notice that all three models tend to
use the same w.r.t. the true class semantically unrelated yet
correlated features for prediction. That is, for class “car-
ton”, all three models support their predictions with a set of
barely visible and centered watermark consisting of chinese
characters for prediction, as well as a second orange and
small watermark appearing in the bottom right corner of
“carton” images with high frequency. Similarly for classes
“garbage truck”, “jigsaw puzzle” and “stole” shown in Fig-
ure S1 all three models support their prediction based on
the discovered yellow watermark, the cut-outs of the digi-
tally added puzzle pattern, the rounded image corners and
the wooden mannequin head.

Considering the systematicity of use of these data artifacts
by all three models, we strongly recommend a thorough
categorization of Clever-Hans behavior of machine learn-
ing models and their data sources essential components of
future dataset creation efforts.
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Figure S1. Heatmaps for classes and samples with on ImageNet and VGG-16 discovered data and prediction artifacts for the VGG-19 and

DenseNet-121 models. Top to bottom: Input samples, heatmaps for VGG-16, VGG-19 and DenseNet-121. Left to right: Colums show

(in pairs) artifacts for classes “carton”, “garbage truck”, “jigsaw puzzle”, “stole” (rounded corners) and “stole” (prediction supported by

mannequin head), which have been discoverd from a VGG-16 classifier, but apply to all three models.

5.3. Additional ClArC Experiments

Figure S2 shows an extreme drop in performance for the
baseline model when poisoning all models with the “jigsaw
puzzle” artefact. This is to be expected, as this artefact is
the only discriminative feature for its class for all samples
that show this artefact.

In Figure S3, the experiments of Section 3.3 are repeated
with 1 artefact class + 9 randomly chosen other classes.
The results are somewhat less expressive than for 20
classes. This may be caused by the fact that with more
classes we poison a higher absolute number of samples.
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Figure S2. Original (x-axis) vs. poisoned (y-axis) validation set accuracy of baseline model (red) and ClArC’ed models (blue) over

poisoning (shade). Additional results for Figure 6.

Figure S3. Original (x-axis) vs. poisoned (y-axis) validation set accuracy of baseline model (red) and ClArC’ed models (blue) over

poisoning (shade). Additional results for the experiment in Section 3.3 with 10 classes instead of 20 (Figure 6).

5.4. Additional ClArC Training-Attribution Validation

Figure S4 demonstrates a setting highly similar to the one
for class “garbage truck” discussed in Section 3.3: The dis-
covered data artifact — here a digitally rounded image cor-
ners with white background — exhibits extremely high re-
gional consistency and only covers very limited parts of
the image area. Once the isolated corner feature has been
added to all samples during our experiment, the model
quickly has disassociated the artifact from the label “stole”.
After continued re-trainng, LRP begins to attribute negative
relevance to rounded image corners, indicating that the pro-
cess of un-Hansing went beyond mere forgetting by creat-
ing a negative association between corner artifact and class
label.

The second data artifact discovered for class “stole” is a

Figure S4. Un-Hans’ing Experiment for class “stole” and the

“rounded corners” artifact. Left to right: Example input, the ar-

tifact (with transparent background, and the white corner pattern

here shown in read for visibility reasons), heatmap expressions

computed during the un-Hans’ing process.

frequently shown wooden “mannequin head” co-appearing
with the woven stoles themselves. Since here, the expres-
sion of the artifact was much more diverse in pose and po-
sition and has shown almost no regional consistency, we
manually isolated a (very) limited amount of prototypical
“mannequin heads” from the data and randomly (within
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Figure S5. Un-Hans’ing experiment for class “stole” and the

“mannequin head” artifact. Left to right: Example inputs, the

artifact (a manually isolated wooden manneqin head), heatmap

expressions computed during the un-Hans’ing process.

reason) added wooden stump as an image element to each
sample of each batch during re-training. Figure S5 shows
the progression of un-Hansing at hand of two different in-
put sample. While for the sample shown at the top of
the figure the model has not disassociated between this
particular expression of the “mannequin head” feature (at
times, the feature’s accumulated positive relevance even in-
creased), the model has ceased to support its prediction for
class “stole” with the artifactual feature for the bottom im-
age.

Lastly, we investigate the “digital jigsaw puzzle pattern” ar-
tifact discoverd for class “jigsaw puzzle”, which appears in
multiple variants. Each variant, however, is expressed with
almost complete and pixel-identical consistency. We there-
fore select one variant of the artifact and add it as a mask
to all training samples of the un-Hansing training subset B

extracted from the ImageNet corpus. Here again, we can
observe that the model forgets the association between this
particular pattern and the class label “jigsaw pattern”: In
Figure S6, positive relevance completely disappears from
the digital jigsaw pattern during un-Hansing, such that the
feature is not used anymore for predicing “jigsaw”. What
prevails, however, is a strongly negative relevance map on
the fornicating ladybug pair of ladybugs, indicating the
model’s reasoning that the insects’ presence speaks against

class “jigsaw” (and rather for a competing network output).
The effect of forgetting this consistently expressed yet very
large artifactual feature has an understandably catastrophic
effect to the model’s capability to predict the original Ima-
geNet label for affected samples (cf. Table S2).

Figure S6. Un-Hans’ing Experiment for class “jigsaw puzzle” and

the “digital puzzle pattern” artifact. Left to right: Example input,

the artifact (semi-automatically isolated jigsaw pattern), heatmap

expressions computed during the un-Hans’ing process.

Our experiments show that unlearning patterns from the
trained neural networks is possible, but might be non-trivial

for more abstract patterns than the our discussed ones,
which are mostly spatially fixed in pixel space.

5.5. More Clever-Hans Candidates
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Figure S7. UMAP (left) with samples and heatmaps (right) of significant clusters, highly separated from the rest of the samples. For

each class, some images and their respective attributions from the identified cluster are shown. Red dots in the UMAPs identify the

clusters the samples to the right have been grouped into. Relevance maps to the right are color coded to identify relevant image regions

supporting the classifier decision in hot colors (red to yellow) irrelevant regions in black color and relevant regions contradicting the final

prediction in cold (blue to cyan) hues. The text above the sample images shows the classifier’s top-1 predicted class, and the prediction

rank of the true label.

5.6. Clever-Hans Candidates with SmoothGrad

Figure S8. Mean separability score τ of spectral embedding of

SmoothGrad attributions based on Fisher Discriminant Analysis.

A high τ means there are significantly different decision strategies

being used, potentially of Clever-Hans type.

Figure S9 shows the UMAP visualization and some high-
lighted clusters with SmoothGrad (Smilkov et al., 2017) at-
tribution heatmaps. We sample 50 times with a noise-level
(as described in (Smilkov et al., 2017)) of 10%. Overall,
we can observe some similar clusters to our LRP experi-
ments (e.g. “laptop”, “mailbox”), but finding significant
examples with somewhat more of a challenge than with
LRP. The FDA ranking, shown in Figure S8 also hints at
less easily detectable artifacts with low scores even for the
most separable classes.
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Figure S9. UMAP (left) with samples and heatmaps (right) of significant clusters, highly separated from the rest of the samples. For

each class, some images and their respective attributions from the identified cluster are shown. Red dots in the UMAPs identify the

clusters the samples to the right have been grouped into. Relevance maps to the right are color coded to identify relevant image regions

supporting the classifier decision in hot colors (red to yellow). The text above the sample images shows the classifier’s top-1 predicted

class, and the prediction rank of the true label.

5.7. Model Behavior of Addition and Removal of

Artifacts

Figure S10. Addition of discovered artifacts to samples of other

classes. Relevance maps are computed w.r.t. the class of origin

of the artifact. Left: Addition of a border which transforms a

“moped” into “mountain bike”. Mid: The addition of the “man-

nequin head” increases the classifier output for class “stole”. Note

how the model interprets the lack of a “mannequin head” on top

of the ball of ice cream in the left heatmap as contradictory fea-

ture. Right: Further note how the model considers the white color

in the image corners as features for “stole”. Adding a digital puz-

zle pattern pattern to any image forces a high probability “jigsaw

puzzle” prediction.

We summarized the results for a quantitative verification
of selected hypotheses in Table S1, with mean prediction
rank difference µ(∆(rk)) and mean prediction difference
µ(∆f(x)).

By removing an artifact, we can estimate to what degree a

model has learned to (solely) base its decision on the arti-
factual feature. If the model reacts strongly to the removal
of the artifactual image feature, it has (with high probabil-
ity) resorted to the artifact as a main source of information
for the respective target class. If the model does only show
a weak reaction or none at all, it may have learned (several)
backup strategies for detecting the concept of the target la-
bel.

We measure the model’s sensitivity to the artifacts dis-
cussed in this section, by using digital inpainting tech-
niques on the affected samples in the validation set. Ta-
ble S2 compiles measurements µ(∆(rk)) and µ(∆f(x))
for artifact removals on classes “stole”, “jigsaw puzzle” and
“mountain bike”. While the prediction for class “mountain
bike” is almost completely unaffected again, and the clas-
sifier seems to have developed backup plans for predict-
ing class “stole” in the absence of rounded image corners
and wooden mannequin heads, the “jigsaw puzzle” clas-
sifier catastrophically fails in two out of three cases when
a discovered digitally pasted jigsaw puzzle pattern is re-
moved from the affected samples. The model has thus, for
the class “jigsaw puzzle”, strongly overfitted to the discov-
ered dataset bias.
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Table S1. The effect of adding a class-related artifact to samples of other classes, towards the prediction of the artifact’s class of origin.

For all artifacts except the freely placable “mannequin head”, we randomly selected 2000 samples from other classes and measured the

effect of the artifact addition. The µ(∆(rk)) measures the mean change in prediction ranking due to the artifact addition and µ(∆f(x))
measure the mean change in the artifact’s class probability. High(er) values mean that the model is (strongly) affected by the artifact in

its decision for the artifact’s class of origin

class bias samples µ(∆(rk)) µ(∆f(x))

stole rounded corners 2000 58.14 0.0004
stole mannequin “head” 10 106.10 0.0081
jigsaw puzzle jigsaw pattern 1 2000 220.98 0.0160
jigsaw puzzle jigsaw pattern 2 2000 355.60 0.8415
jigsaw puzzle jigsaw pattern 3 2000 356.42 0.9540
mountain bike watermark 2000 -101.02 0.0001

Table S2. The effect of removing a class-related artifact from image samples, towards the prediction of the artifact’s class of origin.

The µ(∆(rk)) measures the mean change in prediction ranking due to the artifact addition and µ(∆f(x)) measure the mean change in

the artifact’s class probability. Low(er) values mean that the model is (strongly) affected by the artifact removal in its decision for the

artifact’s class of origin

class bias samples µ(∆(rk)) µ(∆f(x))

stole rounded corners 10 -0.70 -0.1756
stole mannequin “head” 13 -0.62 -0.3713
jigsaw puzzle jigsaw pattern 1 44 -0.11 -0.0146
jigsaw puzzle jigsaw pattern 2 44 -112.52 -0.9160
jigsaw puzzle jigsaw pattern 3 44 -208.41 -0.9305
mountain bike watermark 17 0.00 0.0206

5.8. Validation Set Artifacts

As an additional interesting observation, we have also
found classes with examples in the validation set of Ima-
geNet that show the same type of artifacts as used in some
of the discovered Clever-Hans prediction strategies (e.g.
see Figure S11), putting the model’s performance on the
validation set for any of the affected classes in question.

Figure S11. Left: UMAP of Spectral Embedding on union of

training (red) and validation set (blue) for class ”jigsaw puzzle“.

Right: Images of the validation set in the previously identified

“jigsaw puzzle” bias (top) with attributions (bottom).

5.9. Alternative distance measures

SpRAy has originally only been shown with euclidean
distance to compute the neighborhood graph (Lapuschkin
et al., 2019). In the application of images, this means that
image similarity is identified by spatial properties, i.e. hav-
ing the same attribution intensities at the same pixel renders

Figure S12. Barycenters of four rotated and translated MNIST

digits. The original images are in the four corners. Metrics

are euclidean (left), Wasserstein distance (middle) and Gromov-

Wasserstein distance (right).

high similarity. This is a reasonable approach, especially if
one would like to focus on spatial properties such as wa-
termarks or padding. However, when the domain of in-
terest are spatially unrelated shapes or color distributions,
other measures of similarity may be needed. A recently
very popular distance metric is the Optimal Transport, or
Wasserstein-Distance. In the context of computer vision,
it is also known as the Earth-Mover’s Distance (Rubner
et al., 1998). Its benefit is that it “feels” like a very natural
distance metric (Solomon et al., 2015).

Wasserstein distances use distances between spatially fixed
points over the same identical image grid. The Gromov-
Wasserstein (Peyré et al., 2016) distance matches points
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Figure S13. Top: Significant Gromov-Wasserstein distance based

SpRAy cluster of class ”great grey owl“ with the corresponding at-

tribution maps below the samples. Bottom: Same for class ”ring-

neck snake“.

by their pairwise distances, instead of using a fixed image
grid with a fixed amount of points. This means that how-
ever points are spatially distributed, if in both sets there
are points whose pairwise relations are similar, then their
Gromov-Wasserstein distance will be small. A somewhat
intuitive visualization of euclidean distance, Wasserstein
distance, and Gromov-Wasserstein distance is shown in
Figure S12. We show 4 samples of hand-written digits
(LeCun, 1998) in 4 corners, translated and rotated. All im-
ages that lie on the line between the corners are barycenters
(Cuturi & Doucet, 2014) of the corner images, weighted
by the Chebyshev distance to all samples. The metrics
used to compute the barycenters are the 3 previously men-
tioned metrics. Wasserstein barycenters are computed as
in (Solomon et al., 2015). For the Gromov-Wasserstein
distance, we need to compute pairwise distances between
points in the image. Points are extracted from the images
by choosing each pixel one after another, starting with the
largest pixel value, until 99 percent of the total sum of all
pixel values is reached. We can nicely see that the Wasser-
stein distance seems translation invariant, but fails with dif-
ferent rotations. Gromov-Wasserstein distance shows to be
invariant to rotation, translation, and mirroring, since all
the information is contained in only the pairwise relations.

We can recognize groupings of complicated shapes, invari-
ant of scale, location or translation on clusters found with
Gromov-Wasserstein distance at the base of SpRAy. Ex-
amples for two distilled clusters from classes “ring-neck
snake” — where the snake’s head and its brightly colored
neck appear to be the relevant features — and “great grey
owl” — where the patterns highlighting the face (eyes and
beak) and shape of the head seem to be the common de-
nominator — can be seen in Figure S13. However, despite
the favorable invariance properties, deducting distinct (and
automatedly testable) hypotheses for these strategies turns

out to be a non-trivial task, since clusters are semantically
much harder to interpret compared to groupings found with
a euclidean distance at the root.


