
Explainable k-Means Clustering: Theory and Practice∗

Sanjoy Dasgupta Nave Frost Michal Moshkovitz Cyrus Rashtchian

Abstract
Despite the popularity of explainable AI, there is
limited work on effective methods for unsuper-
vised learning. We study algorithms for k-means
clustering, where we use a small decision tree to
partition a dataset into k clusters. This enables
us to explain each cluster assignment by a short
sequence of single-feature thresholds. We present
two explainable k-means clustering algorithms.
First, the IMM algorithm produces a tree with k
leaves that induces anO(k2) approximation to the
optimal k-means cost. Then, we develop a prac-
tical algorithm, ExKMC, that takes an additional
parameter k′ ≥ k and outputs a decision tree with
k′ leaves. To improve the efficiency of ExKMC,
we use a new surrogate cost to expand the tree
and to label the leaves with one of k clusters. We
prove that as k′ increases, the surrogate cost is
non-increasing, and hence, we trade explainabil-
ity for accuracy. Empirically, we validate that
both IMM and ExKMC produce low cost cluster-
ings. We see that when ExKMC uses 4k leaves, it
outperforms both standard decision tree methods
and other algorithms for explainable clustering.
Implementation of IMM and ExKMC available at
https://github.com/navefr/ExKMC.

1. Introduction
Most research on explainable machine learning develops
ways to interpret supervised methods, focusing on fea-
ture importance in black-box models (Arrieta et al., 2020;
Deutch & Frost, 2019; Lipton, 2018; Lundberg & Lee, 2017;
Molnar, 2019; Murdoch et al., 2019; Ribeiro et al., 2016;
Rudin, 2019). To complement previous efforts, we study ex-
plainable algorithms for clustering, a canonical example of
unsupervised learning. Clustering algorithms often operate
iteratively, using global properties of the data to converge
to a low-cost solution. For center-based clustering, the best
explanation for a cluster assignment may simply be that an
example is closer to some center than any others. While this
type of explanation provides some insight, it obscures the
impact of individual features, and the cluster assignments
often depend on the data in a complicated way.

∗Based on two papers (Dasgupta et al., 2020; Frost et al., 2020).

Recent work on explainable clustering goes one step further
by enforcing that the clustering be derived from a binary
threshold tree (Bertsimas et al., 2018; Chen et al., 2016;
Fraiman et al., 2013; Ghattas et al., 2017; Liu et al., 2005).
Each node is associated with a feature-threshold pair that
recursively splits the dataset, and labels on the leaves corre-
spond to clusters. Any cluster assignment can be explained
by a small number of thresholds, each depending on a single
feature. For large, high-dimensional datasets, this provides
more information than typical clustering methods.

To make our study concrete, we focus on the k-means ob-
jective. The goal is to find k centers that approximately
minimize the sum of the squared distances between n data
points in Rd and their nearest center (Aggarwal et al., 2009;
Aloise et al., 2009; Arthur & Vassilvitskii, 2007; Dasgupta,
2008; Kanungo et al., 2002; Ostrovsky et al., 2013).

We first present an explainable k-means algorithm, the Iter-
ative Mistake Minimization (IMM) algorithm. It builds the
smallest threshold tree (with k leaves for k clusters), and it
achieves a worst-case O(k2) approximation to the optimal
k-means cost. Prior to our work, no algorithms were known
with approximation ratio independent of the dimension and
dataset size. We also prove a lower bound showing that an
Ω(log k) approximation is necessary for exactly k leaves.

Then, we propose an extension of IMM to expand the tree
to use more leaves and achieve a better clustering. Our
method, ExKMC, takes as input two parameters k, k′ and
a set X ⊆ Rd with |X | = n. It first builds a threshold
tree with k leaves using the IMM algorithm. Then, given a
budget of k′ > k leaves, it greedily expands the tree. At
each step, the clusters form a refinement of the previous
clustering. By adding more thresholds, we gain flexibility
in the data partition, and we also allow multiple leaves to
correspond to the same cluster (with k clusters total).

To efficiently determine the assignment of leaves to clus-
ters, we design and analyze a surrogate cost, which is non-
increasing throughout the execution. The IMM algorithm
first runs a standard k-means algorithm, producing a set
of k reference centers that are given as an additional input.
As ExKMC expands the tree to k′ > k leaves, it minimizes
the cost of the current clustering compared to the reference
centers. By fixing the centers between steps, we can quickly
compute the next feature-threshold pair to add. Finally, we
label each leaf with the best reference center.
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Figure 1. Tree size (explanation complexity) vs. k-means clustering quality.

Figure 1 depicts the improvement from using more leaves.
The left picture shows a near-optimal 3-means clustering.
Next, the IMM algorithm with k = 3 leaves leads to a large
deviation from the reference clustering. Extending the tree
to use 2k = 6 leaves with ExKMC leads to a lower-cost
result that better approximates the reference clustering. We
form three clusters by subdividing the previous clusters and
mapping multiple leaves to the same cluster. Finally, trees
with enough leaves can perfectly fit the reference clustering.

Related Work. We address the challenge of obtaining a
low cost k-means clustering using a small decision tree. It is
NP-hard to find the optimal k-means clustering (Aloise et al.,
2009; Dasgupta, 2008) or a close approximation (Awasthi
et al., 2015). Our approach has roots in work on cluster-
ing with unsupervised decision trees (Basak & Krishna-
puram, 2005; Chang & Jin, 2002; De Raedt & Blockeel,
1997; Yasami & Mozaffari, 2010) and in literature on ex-
tending decision trees for tasks beyond classification (Geurts
& Louppe, 2011; Geurts et al., 2007; Jernite et al., 2017;
Louppe et al., 2013; Pliakos et al., 2018). Prior explain-
able clustering algorithms optimize different objectives than
k-means, such as the Silhouette metric (Bertsimas et al.,
2018), density measures (Liu et al., 2005), or interpretabil-
ity scores (Saisubramanian et al., 2020). A localized version
of the 1-means cost has been used for greedily growing the
tree (Fraiman et al., 2013; Ghattas et al., 2017).

Clustering via trees is explainable by design. We contrast
this with the indirect approach of clustering with a neural
network and then explaining the network (Kauffmann et al.,
2019). A generalization of tree-based clustering has been
studied using rectangle-based models (Chen et al., 2016;
Chen, 2018; Pelleg & Moore, 2001). Their focus differs
from ours as they consider including external information,
via a graphical model and performing inference with varia-
tional methods. Clustering after feature selection (Boutsidis
et al., 2009; Cohen et al., 2015) or feature extraction (Bec-
chetti et al., 2019; Boutsidis et al., 2014; Makarychev et al.,
2019) reduces the number of features, but it does not lead
to an explainable solution since it runs a non-explainable
k-means algorithm on the reduced space.

1.1. Our contributions

We present two new algorithms, IMM for building a tree
with k leaves that achieves an O(k2) approximation to the
optimal k-means cost, and a practical extension, ExKMC
that efficiently outputs an explainable k-means clustering
with the following properties:

Explainability-accuracy trade-off: We provide a simple
method that iteratively expands any threshold tree into a
larger tree with a specified number of leaves. At each step,
we aim to better approximate a given reference clustering
(such as from a standard k-means implementation). The
key idea is to minimize a surrogate cost that is based on the
reference centers instead of using the k-means cost directly.

Convergence: We demonstrate empirically that ExKMC
quickly converges to the reference clustering as the number
of leaves increases. On many datasets, the cost ratio versus
the reference clustering goes to 1.0 as the number of leaves
goes from k to 4k, where k is the number of labels for
classification datasets. In theory, we prove that the surrogate
cost is non-increasing throughout the execution of ExKMC,
verifying that we trade explainability for clustering accuracy.

Low cost: Our most striking finding is that tree-based clus-
terings can match the cost of standard clusterings. This is
possible with a small tree, even on large, high-dimensional
datasets. ExKMC demonstrates that explanability can be
obtained in conjunction with low cost on many datasets.

Speed: Using only standard optimizations, ExKMC can clus-
ter fairly large datasets (e.g., CIFAR-10 or covtype) in under
15 minutes using a single processor, making it a suitable
alternative to standard k-means in data science pipelines.

2. Preliminaries
We let [n] = {1, 2, . . . , n}. For k ≥ 1, a k-clustering refers
to a partition of a dataset into k clusters. Let C1, . . . , Ck

be a k-clustering of X ⊆ Rd with |X | = n and µj =

mean(Cj). The k-means cost is
∑k
j=1

∑
x∈Cj ‖x− µj‖22.



Explainable clustering. Let T be a binary threshold tree
with k′ ≥ k leaves, where each internal node contains a
single feature i ∈ [d] and threshold θ ∈ R. We also consider
a labeling function ` : leaves(T )→ [k] that maps the leaves
of T to clusters. The pair (T, `) induces a k-clustering of X
as follows. First, X is partitioned via T using the feature-
threshold pairs on the root-to-leaf paths. Then, each point
x ∈ X is assigned to one of k clusters according to how
` labels its leaf. Geometrically, the clusters reside in cells
bounded by axis-aligned cuts; the number of cells equals the
number of leaves. This results in a k-clustering Ĉ1, . . . , Ĉk

with means µ̂j = mean(Ĉj), where the k-means cost is

cost(T ) =

k∑
j=1

∑
x∈Ĉj

‖x− µ̂j‖22.

Problem Statement. For a datasetX ⊆ Rd and parameters
k, k′ with k′ ≥ k, the goal is to efficiently construct a
binary threshold tree T with k′ leaves along with a labeling
function ` : leaves(T ) → [k] such that (T, `) induces a
k-clustering of X with as small k-means cost as possible.

3. Our Algorithms
3.1. IMM

We first explain the IMM algorithm that produces a threshold
tree with k leaves. It first runs a standard k-means algorithm
to find k centers. Then, it iteratively finds the best feature-
threshold pair to partition the data into two parts. At each
step, the number of mistakes is minimized, where a mistake
occurs if a data point is separated from its center. Each
partition also enforces that at least one center ends up in
both children, so that the tree terminates with exactly k
leaves. Each leaf contains one center at the end, and the
clusters are assigned based this center.

Algorithm 1 takes as input a dataset X ⊆ Rd. The first step
is to obtain a reference set of k centers {µ1, . . . ,µk}, for
instance from a standard clustering algorithm. We assign
each data point xj the label yj of its closest center. We
then call the build_tree procedure, which looks for a
tree-induced clustering that fits these labels.

The tree is built top-down, using binary splits. Each node
u of the tree can be associated with the portion of the input
space that passes through that node, a hyper-rectangular
region cell(u) ⊆ Rd. If this cell contains two or more
of the centers µj , then it needs to be split. We do so by
picking the feature i ∈ [d] and threshold value θ ∈ R such
that the resulting split xi ≤ θ sends at least one center to
each side and moreover produces the fewest mistakes: that
is, separates the fewest points in X ∩ cell(u) from their
corresponding centers in {µj : 1 ≤ j ≤ k} ∩ cell(u). We
do not count points whose centers lie outside cell(u), since
they are associated with mistakes in earlier splits.

Algorithm 1 ITERATIVE MISTAKE MINIMIZATION

Input :x1, . . . ,xn – vectors in Rd
k – number of clusters

Output :root of the threshold tree

1 µ1, . . .µk ← k-Means(x1, . . . ,xn, k)
2 foreach j ∈ [1, . . . , n] do
3 yj ← argmin1≤`≤k‖x

j − µ`‖

4 return build_tree({xj}nj=1, {y
j}nj=1, {µ

j}kj=1)

1 build_tree({xj}mj=1, {y
j}mj=1, {µ

j}kj=1):
2 if {yj}mj=1 is homogeneous then
3 leaf.cluster ← y1

4 return leaf

5 foreach i ∈ [1, . . . , d] do
6 `i ← min1≤j≤m µy

j

i

7 ri ← max1≤j≤m µy
j

i

8 i, θ ← argmini,`i≤θ<ri
∑m
j=1 mistake(x

j ,µy
j
, i, θ)

9 M← {j | mistake(xj ,µy
j
, i, θ) = 1}mj=1

10 L← {j | (xji ≤ θ) ∧ (j 6∈ M)}mj=1

11 R← {j | (xji > θ) ∧ (j 6∈ M)}mj=1

12 node.condition← “xi ≤ θ”
13 node.lt← build_tree({xj}j∈L, {yj}j∈L, {µj}kj=1)

14 node.rt← build_tree({xj}j∈R, {yj}j∈R, {µj}kj=1)

15 return node

1 mistake(x,µ, i, θ):
2 return (xi ≤ θ) 6= (µi ≤ θ) ? 1 : 0

We find the optimal split (i, θ) by searching over all pairs
efficiently using dynamic programming. We then add this
node to the tree, and discard the mistakes (the points that
got split from their centers) before recursing on the left and
right children. We terminate at a leaf node whenever all
points have the same label (i.e., the subset of the data is
homogeneous). Because there were k different labels to
begin with, the resulting tree has exactly k leaves.

Guarantees for IMM. The IMM algorithm provides an
O(k2) approximation to the optimal k-means cost, assum-
ing that a constant-factor approximation algorithm generates
the initial k centers. We refer the reader to the full paper for
proofs and more details (Dasgupta et al., 2020).

Theorem 1. Suppose that IMM takes centers µ1, . . . ,µk

and returns a tree T of depth H . The k-means cost satisfies

cost(T ) ≤ (8Hk + 2) · cost(µ1, . . . ,µk)

In particular, IMM achieves worst case approximation fac-
tors of O(k2) using any O(1) approximation to k-means.

We state the theorem in terms of the depth of the tree to
highlight that the approximation guarantee may depend on
the structure of the input data. We prove the approximation
bound by characterizing the excess clustering cost induced
by the tree. Any point x that ends up in a different leaf
from its correct center µj incurs some extra cost. To bound
this, we consider the internal node u at which x is separated
from µj . Node u also contains the center µi that ultimately



ends up in the same leaf as x. The excess cost for x can then
be bounded by ‖µi − µj‖22 and this is at most the k times
the diameter of the cell’s bounding box. These terms can be
bounded in terms of the cost of the reference clustering.

Lower Bound. We also prove that a threshold tree with
k leaves cannot, in general, yield better than an Ω(log k)
approximation to the optimal k-means clustering.

Theorem 2. For any k ≥ 2, there exists a dataset with k
clusters such that any threshold tree T with k leaves must
have k-means cost at least cost(T ) ≥ Ω(log k) · cost(opt),
where opt is the optimal k-medians or means clustering.

3.2. ExkMC

We describe our explainable clustering algorithm, ExKMC,
that efficiently finds a tree-based k-clustering of a dataset.
Starting with a base tree (either empty or from an existing
algorithm like IMM), ExKMC expands the tree by replacing
a leaf node with two new children. It refines the clustering,
while allowing the new children to be mapped to different
clusters. A key optimization is to use a new surrogate cost to
determine both the best threshold cut and the labeling of the
leaves. At the beginning, we run a standard k-means algo-
rithm and generate k reference centers. Then, the surrogate
cost is the k-means cost if the centers were the reference
centers. By fixing the centers, instead of changing them at
every step, we determine the cluster label for each leaf inde-
pendently (via the best reference center). For a parameter k′,
our algorithm terminates when the tree has k′ leaves.

Surrogate cost. We start with a set of k reference centers
µ1, . . . ,µk, obtained from a standard k-means algorithm.
This induces a clustering with low k-means cost. While it is
possible to calculate the actual k-means cost as we expand
the tree, it is time-consuming to recalculate the distances
to a dynamic set of centers. Instead, we fix the reference
centers and define the surrogate cost as the sum of squared
distances between points and their closest reference center:

Definition 1 (Surrogate cost). Given centers µ1, . . . ,µk

and a threshold tree T that defines the clustering
(Ĉ1, . . . , Ĉk

′
), the surrogate cost is defined as

c̃ost
µ1,...,µk

(T ) =

k′∑
j=1

min
i∈[k]

∑
x∈Ĉj

∥∥x− µi
∥∥2
2
.

The difference between the new surrogate cost and the k-
means cost is that the centers are fixed.

Algorithm 2 describes the ExKMC algorithm, which uses
subroutines in Algorithm 3. It takes as input a value k, a
datasetX , and a number of leaves k′ ≥ k. The first step is to
generate k reference centers µ1, . . . ,µk from a standard k-
means implementation and to build a threshold tree T with k

Figure 2. Explainability-accuracy trade-off: We showcase the
effect of adding leaves to the tree while clustering a subset of
20newsgroups. As ExKMC expands the IMM tree, it refines the
clusters and reduces the 4-means cost by using a larger tree.

leaves (for evaluation, T is the output of the IMM algorithm).
For simplicity, we refer to these as inputs. ExKMC outputs
a tree T ′ and labeling ` : leaves(T ′) → [k] that assigns
leaves to clusters. Notably, the clustering induced by (T ′, `)
always refines the one from T . At a high level, we compute
the best feature-threshold pair to expand the tree one node
at a time. For efficiency, we use dynamic programming to
scan all thresholds in each coordinate. We expand the tree
by splitting the node with the largest improvement to the
surrogate cost. Throughout, we store the improvement for
each potential split and only update the ones that change. In
the end, we create a tree T ′ with k′ labeled leaves, where
the labeling ` maps a leaf to the lowest cost reference center.

Guarantees of ExKMC. We provide some guarantees on
the performance of ExKMC. We first prove the surrogate
cost is non-increasing and it is easy to show that this implies
ExKMC eventually converges to the reference clustering.
See the full paper for details and proofs (Frost et al., 2020).

Theorem 3. The surrogate cost, c̃ost, is non-increasing
throughout the execution of ExKMC.

We also verify that ExKMC has a worst-case approximation
ratio of O(k2) compared to the optimal k-means cost when
using IMM to build the base tree. Finally, we provide a
separation between IMM and ExKMC for the lower bound
dataset from Theorem 2, where we prove that ExKMC leads
to an optimal tree-based clustering with O(k log k) leaves.

Qualitative analysis. Figure 2 depicts two example trees
with four and eight leaves, respectively. on a subset of four
clusters from the 20newsgroups dataset. The IMM base tree
uses three features (words) to define four clusters. Then,
ExKMC expands one of the leaves into a larger subtree, using
seven total words to construct more nuanced clusters that
better correlate with the newsgroup topics.



Algorithm 2 EXKMC: EXPANDING
EXPLAINABLE k-MEANS CLUSTERING
Input : X – Set of vectors in Rd

M – Set of k reference centers
T – Base tree
k′ – Number of leaves

Output : Labeled tree with k′ leaves

1 splits← dict()
2 gains← dict()
3 foreach leaf ∈ T.leaves do
4 add_gain(leaf,X ,M, splits, gains)

5 while |T.leaves| < k′ do
6 leaf← argmaxleaf gains[leaf]
7 i, θ ← splits[leaf]
8 µL,µR ← find_labels(X ,M, i, θ)
9 leaf.condition← “xi ≤ θ”

10 leaf.l← new Leaf(label = µL)

11 leaf.r ← new Leaf(label = µR)
12 add_gain(leaf.l,X ,M, splits, gains)
13 add_gain(leaf.r,X ,M, splits, gains)
14 delete(splits[leaf], gains[leaf])

15 return T

Algorithm 3 SUBROUTINES

add_gain(leaf,X ,M, splits, gains):
Xl ← {x ∈ X | x path ends in leaf}
i, θ ← argmini,θ split_cost(Xl,M, i, θ)

best_cost← split_cost(Xl,M, i, θ)
splits[leaf]← (i, θ)

gains[leaf]← c̃ostM(Xl)− best_cost

split_cost(X ,M, i, θ):
XL ← {x ∈ X | xi ≤ θ}
XR ← {x ∈ X | xi > θ}
return c̃ostM(XL) + c̃ostM(XR)

find_labels(X ,M, i, θ):
µL ← argminµ∈M

∑
x∈X :xi≤θ

‖x− µ‖22
µR ← argminµ∈M

∑
x∈X :xi>θ

‖x− µ‖22
return µL,µR

4. Empirical Evaluation

Algorithms. We compare the following clustering methods:

• Reference Clustering. We use sklearn KMeans,
10 random initializations, 300 iterations.

• CART. Standard decision tree from sklearn that
minimizes gini impurity. Points in the dataset are
assigned labels using the reference clustering.

• KDTree. Split highest variance feature at median. Size
determined by leaf_size parameter. Labels mini-
mize c̃ost w.r.t. centers of the reference clustering.

• CLTree. Explainable clustering method. Public imple-
mentation (Christodoulou; Liu et al., 2005).

• CUBT. Explainable clustering method. Public imple-
mentation (Ghattas; Fraiman et al., 2013).

• ExKMC. Algorithm 2 with empty base tree; then, min-
imizes c̃ost at each split w.r.t. reference centers.

• ExKMC (base: IMM). Algorithm 2 with IMM base
tree starting with k leaves; then, minimizes c̃ost at
each split w.r.t. reference centers.

Set-up. We use 10 standard real datasets. The number of
clusters k and the number of leaves k′ are inputs. We start
with k equal to number of labels for classification datasets.
We plot the cost ratio compared to the reference clustering
(best = 1.0). For the baselines, we do hyperparameter
tuning and choose the lowest cost clustering at each k′.
CUBT and CLTree could only be feasibly executed on six
small real datasets (we cap the running time at one hour).

4.1. Experimental Results and Discussion

On all of the datasets, our method ExKMC performs well. It
often has the lowest cost throughout, except for CIFAR-10,
where it requires around 3.5 ·k leaves to be competitive. On
the Avila dataset, ExKMC significantly outperforms CART.

When the number of leaves is exactly k, we obtain the
performance of the IMM algorithm, where we see that its
cost is quite low (much better than the theoretical analysis).

CLTree performs the worst in most cases, and the cost
is often much larger than the other methods. Turning to
CUBT, we see that on most datasets it is competitive (but
often not the best). However, on Digits and Mice Protein,
CUBT fails to converge to a good clustering. We see that
CART performs well on many of the datasets, as expected.
On Avila and 20newsgroups, CART has a fairly high cost.
For the small datasets, KDTree performs competitively, but
on large datasets, the cost remains high. We observe that the
CLTree cost varies as a function of the number of leaves.
We separately perform a hyperparameter search for each
instance, and surprisingly, the cost can sometimes increase.

Trade-off. The main objective of our new algorithm is
to provide a flexible trade-off between explainability and
accuracy. Compared to the IMM algorithm, we see that using
ExKMC to expand the threshold tree consistently leads to a
lower cost clustering. We also see that our surrogate cost
improves the running time without sacrificing effectiveness.

Low cost. ExKMC often achieves a lower k-means cost for
a given number of leaves compared to all four baselines
CUBT (Fraiman et al., 2013), CLTree (Liu et al., 2005),
KDTree (Bentley, 1975), and CART (Loh, 2011).



Small Datasets

(a) Iris (b) Wine

(c) Breast Cancer (d) Digits (e) Mice Protein (f) Anuran

Larger Datasets

(g) Avila (h) Covtype (i) 20newsgroups (j) CIFAR-10

Figure 3. Ratio of the tree-based clustering cost to the near-optimal k-means clustering (y-axis) varying the number of leaves (x-axis).
Lower is better, best = 1.0. Our algorithm (black line) consistently performs well.

Figure 4. Runtime.

Convergence. IMM produces a fairly low k-means cost
with k leaves. Expanding the tree with ExKMC to 4k leaves
often results in nearly the same cost as the reference clus-
tering. CIFAR-10 is an outlier, where none of the methods
converge when using pixels as features. In practice, a tree
with 4k leaves only slightly increases the explanation com-
plexity compared to a tree with k leaves (and k leaves are
necessary). ExKMC successfully achieves a good tree-based
clustering with better interpretability than standard methods.

Running time. Figure 4 shows the runtime (single process,
i7 CPU @ 2.80GHz, 16GB RAM). Both IMM and ExKMC

first run KMeans (from sklearn, 10 initializations, 300
iterations), and we report cumulative times. The explain-
able algorithms construct trees in under 15 minutes. On
six datasets, they incur 0.25× to 1.5× overhead compared
to standard KMeans. The 20newsgroups dataset has the
largest overhead because sklearn optimizes for sparse
vectors while IMM and ExKMC currently do not.

5. Conclusion
We present two new algorithms, IMM and ExKMC, for ex-
plainable k-means clustering. Theoretically, IMM is the
first such algorithm with a provable guarantee that only
depends on the number of clusters. To overcome lower
bounds on trees with k leaves, we develop ExKMC, which
generates a threshold tree with a specified number of leaves.
Empirically, we find that the IMM worst-case analysis is
pessimistic because even with k leaves it achieves cluster-
ing cost within 5–30% versus standard k-means algorithms.
Moreover, ExKMC often has lower k-means cost than four
baselines. We find that threshold trees with 4k leaves suf-
fice to get within 1–2% of the cost of a typical k-means
algorithm. Overall, we verify that it is possible to find an
explainable clustering with high accuracy, while using only
O(k) leaves for k-means clustering. ExKMC could replace
standard k-means implementations in data science pipelines.
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