TREX: Tree-Ensemble Representer-Point Explanations

Jonathan Brophy ! Daniel Lowd !

Abstract

How can we identify the training examples that
contribute most to the prediction of a tree ensem-
ble? In this paper, we introduce TREX, an expla-
nation system that provides instance-attribution
explanations for tree ensembles, such as random
forests and gradient boosted trees. TREX builds
on the representer point framework previously
developed for explaining deep neural networks.
Since tree ensembles are non-differentiable, we
define a kernel that captures the structure of the
specific tree ensemble. By using this kernel
in kernel logistic regression or a support vector
machine, TREX builds a surrogate model that
approximates the original tree ensemble. The
weights in the kernel expansion of the surrogate
model are used to define the global or local im-
portance of each training example.

Our experiments show that TREX’s surrogate
model accurately approximates the tree ensemble;
its global importance weights are more effective
in dataset debugging than the previous state-of-
the-art; its explanations identify the most influen-
tial samples better than alternative methods under
the remove and retrain evaluation framework; it
runs orders of magnitude faster than alternative
methods; and its local explanations can identify
and explain errors due to dataset shift.

1. Introduction

Tree ensembles, including random forests (Breiman, 2001)
and gradient boosted trees (Friedman, 2001), remain one of
the most effective machine learning approaches to classifi-
cation in many domains. In recent years, their popularity
has only grown, as shown by the increasing number of
gradient boosting frameworks, including XGBoost (Chen
& Guestrin, 2016), LightGBM (Ke et al., 2017), and Cat-
Boost (Prokhorenkova et al., 2018).

"Department of Computer Science, University of Oregon, Eu-
gene, Oregon, USA. Correspondence to: Jonathan Brophy <jbro-
phy @cs.uoregon.edu>, Daniel Lowd <lowd@cs.uoregon.edu>.

As performant as tree ensembles are, their complexity and
scale can make them inherently difficult to understand, and
their outputs challenging to interpret. This can have a num-
ber of consequences, including lower trust and decreased use
of these models, especially in problem domains where deci-
sions can have major impacts (e.g. health care, autonomous
vehicles, etc.). By understanding how these models make
predictions at a deeper level, we can expose deficiencies in
the model or the data they are trained on. This can lead to
higher quality data, which can result in more performant
models or models that do what practitioners would expect,
ultimately increasing trust for the consumers of their deci-
sions.

One approach to understanding model predictions are
through instance attribution explanations, which identify
examples in the training data that have the greatest impact
on a model’s prediction for a given query instance. This type
of interpretability may not only deepen one’s understanding
and trust of the model, but may also aid in model and dataset
debugging. Instance attribution methods can also be used
in conjunction with other explanation approaches, such as
feature-attribution methods (Lundberg & Lee, 2017; Ribeiro
et al., 2016).

Recent work (Yeh et al., 2018) adapted the concept of rep-
resenter theorems (Scholkopf et al., 2001) to introduce a
representer point framework for explaining the predictions
of deep learning classifiers in terms of excitatory and in-
hibitory training examples. Their method decomposes the
pre-activation prediction of a query instance into a linear
combination of training point activations. Unfortunately,
this approach is specific to deep learning models, and re-
quires a suitable differentiable loss function to compute
the “representer values” (weights) of the training-instance
activations.

Tree ensembles are non-differentiable due to the step func-
tions created by feature splits in each tree. To adapt the rep-
resenter point framework to tree ensembles, we introduce
TREX (Tree-ensemble Representer-point EXplanations).
TREX leverages the structure of the trees to build a tree
ensemble kernel, which acts as a similarity measure be-
tween data points. Then, we train a kernelized model on
this new kernel representation by solving the dual problem
to obtain weights for the training instances. We are then

TREX: Tree-Ensemble Representer-Point Explanations

able to decompose any prediction as a linear combination of
these training instances, resulting in an instance-attribution
explanation of positive and negative training points. We
show that TREX is not only able to aid in dataset debugging
and model understanding, but is also more scalable than
previous methods.

Our contributions are as follows:

1. We define a new kernel for tree ensembles, LeafOutput,
based on the path through and the numerical output of
each tree in the ensemble.

2. We introduce TREX, a method for generating global
and local explanations for tree ensembles by using a
kernelized surrogate model within the representer point
framework.

3. We evaluate TREX on four benchmark datasets,
demonstrating that: (1) the surrogate models accurately
approximate the original tree ensembles; (2) in a data
cleaning setting, TREX identifies noisy instances bet-
ter than the previous state-of-the-art; (3) model perfor-
mance decreases fastest when removing the examples
TREX identifies as influential; (4) TREX is orders of
magnitude faster than other methods; (5) TREX’s lo-
cal explanations can identify and explain errors due to
dataset shift.

2. Background
2.1. Instance-attribution Explanations

(Koh & Liang, 2017) derived an approximation of the in-
fluence functions framework from classical statistics (Cook
& Weisberg, 1980) for deep learning models. This allows
one to compute the influence of each training instance on
the model’s prediction without having to perform leave-one-
out retraining, which is intractable in most cases. Their
approach is specific to deep learning models, requiring the
computation of the Hessian vector product and first-order
derivatives of the loss function. (Yeh et al., 2018) introduce
the representer point framework for deep neural networks,
a way of efficiently decomposing the pre-activation predic-
tions of a neural network into a linear combination of the
training samples.

2.2. Tree Ensembles

Since influence functions cannot be directly applied to deci-
sion trees, (Sharchilev et al., 2018) introduce LeafInfluence,
an extension of influence functions to gradient boosted de-
cision trees. Their approach considers the tree-ensemble
structure to be fixed, allowing them to analyze the changes
in leaf values with respect to the weights of the training
samples.

(Davies & Ghahramani, 2014) introduce the idea of a ran-
dom forest kernel, a type of random partition kernel which
clusters the data by first sampling a level d for a tree in the
forest, and then assigning datapoints to clusters (denoted by
nodes at level d) based on whose ancestors were in which
nodes at that level. They show that this supervised kernel is
a viable and scalable alternative to the more popular linear
and radial basis function (RBF) kernels. (He et al., 2014) use
a random forest kernel with logistic regression to improve
performance of predicting ad clicks at Facebook.

(Bloniarz et al., 2016) also build on the idea of a random
forest kernel and introduce SILO, a local linear modeling
technique using random forests to identify supervised neigh-
bors. Given an instance x*, SILO generates a local training
distribution based on how often a training instance z* ends at
the same terminal node as z’. This distribution is then used
to fit a weighted linear regression model, whose prediction
approximates E(y|z).

(Plumb et al., 2018) apply this idea and introduce MAPLE, a
model-agnostic supervised local explainer, used to generate
feature-based explanations similar to LIME (Ribeiro et al.,
2016). MAPLE fits a regression forest to the outputs of a
black-box model, then uses a feature importance selector
called DSTUMP (Kazemitabar et al., 2017) to select the
most important features. When an explanation is desirable,
it fits a weighted linear regression model to these features us-
ing the local training distribution as training sample weights.

Instead of fitting a separate weighted linear model for each
prediction, our approach trains a kernelized model that glob-
ally approximates the tree ensemble; we can use this model
to get a global perspective of which training samples are
influential as well as provide local explanations as to which
samples are influential to one or multiple test instances. We
achieve this by introducing a new supervised tree ensemble
kernel based on the leaf outputs of the trees in the ensemble.

3. Methodology

In this section, we present TREX (Tree-ensemble
Representer-point EXplanations), an extension of the repre-
senter point framework (Yeh et al., 2018), initially designed
for deep learning models, to non-differentiable tree ensem-
bles such as gradient boosted trees. The main idea is to
decompose a prediction from the tree ensemble into a linear
combination of the training points; this enables one to iden-
tify the training instances that contribute the most towards a
given prediction.

In order to apply the representer theorem and obtain this
linear representation, we first need to define a kernel that
captures the structure of the tree ensemble. Second, we need
to use this kernel to train a kernel logistic regression (KLR)
or a support vector machine (SVM) model that approximates

TREX: Tree-Ensemble Representer-Point Explanations

the original tree ensemble. This gives us a kernel expansion
with learned weights — what (Yeh et al., 2018) describe
as “representer values” — for the training examples. Our
kernelized model can then represent a prediction as a linear
combination of the training examples.

3.1. Preliminaries

We assume an instance space X defined over d features,
{x1,29,...,24}. For simplicity, we assume that all at-
tributes are real-valued. In binary classification, our goal
is to find a function f : X — {—1,41} that maps each
instance to either the positive (41) or negative (—1) class.

A decision tree is a tree-structured model where each leaf
is associated with a categorical or real-valued prediction,
each internal node is associated with an attribute x;, and
its outgoing branches define a partition over the attribute’s
values. Given an instance x € X, the prediction of a deci-
sion tree can be found by traversing the tree, starting at the
root and following the branches consistent with the attribute
values in z. The traversal ends in a single leaf node, and the
prediction of the tree is equal to the value of the leaf node.

A tree ensemble is a set of decision trees, each defined over
the instance space X. Given an instance x € X, the predic-
tion of the tree ensemble is the sum of the predictions of all
trees in the set. See Figure 1 for an example of a tree ensem-
ble containing two trees, each defined over three attributes.
As depicted, the left branch of each split is associated with
the value O and the right branch is associated with 1. For
the instance = = (1,0, 0), the first tree evaluates to 5 and
the second tree evaluates to 3.8, for a total prediction of 8.8.
Since 8.8 is positive, the predicted label for x is positive.

3.2. Tree Ensemble Kernels

The first part of our method is to define a kernel that com-
putes the similarity between pairs of data points based on
how they are processed by a specific tree ensemble, 7T'. In-
tuitively, two data points are processed identically if they
are assigned to the same leaf in each tree in the ensemble.
The degree of similarity between two data points can thus
be defined by comparing the specific leaf or leaf value that
each data point is assigned by each tree in the ensemble.

We define our tree ensemble kernels as dot products in an
alternate feature representation defined by the feature map-
ping ¢: k(z%,27;T) = ¢(z%;T) - ¢(27; T). Note that the
kernel is parametrized by 7', since the computation necessar-
ily depends on the structure of the tree ensemble. Different
choices of ¢ emphasize different aspects of the tree ensem-
ble structure: LeafPath is a tree-based kernel (Bloniarz et al.,
2016; He et al., 2014; Plumb et al., 2018) where the cle-
ments in this new feature vector represent the leaves of all
the trees in T'; a value of 1 means z* traversed to that leaf,

Input: (1 0 0) X X3
X, X, X, X,
-1 2356 -32 72 385 -29
LeafPath. (0 0 1 O 0 1 0 0
TreeOutput: (5 3.8)
LeafOutput: (0 0 5 O 0 380 0)

Figure 1. Different transformations of a single data instance from
a simple two-tree ensemble. The numbers at the leaves represent
leaf values, and the lines in bold represent the paths taken through
each tree in the ensemble given the input instance.

otherwise the value is 0.

TreeOutput is a new tree-based kernel that takes the leaf
value from each tree, resulting in a vector whose length is
equal to the number of trees in the ensemble. This kernel
supports the fact that two instances can take different paths
through a tree but still contribute to the same label. Finally,
LeafOutput is a combination of the previous two kernels, in
which we take the LeafPath representation and replace each
value of 1 with the actual value of the corresponding leaf.
See Figure 1 for a simple example of each kernel’s feature
representation.

3.3. Representer Point Decomposition

Representer theorems (Scholkopf et al., 2001) state that
the optimal solutions of many learning problems can be
represented in terms of the training examples. In partic-
ular, the nonparametric representer theorem (Theorem 4
from (Scholkopf et al., 2001)) applies to empirical risk mini-
mization within a reproducing kernel Hilbert space (RKHS).
This covers a wide range of linear and kernelized machine
learning methods.

Representer theorems provide a natural way to explain clas-
sifiers and their predictions in terms of the training instances.
Given a representation in the following form,

f() = Zaik(-,xi), (D

the value of each weight ! describes the global contribution
of training instance ' to the overall classifier f(-). For an
individual prediction on a query instance %, the contribution
of #% to the prediction is simply o’k (z!, 2%), the instance
weight times the kernel function applied to x* and z.

However, a tree ensemble is not an RKHS. In order to de-
velop a representer point method for tree ensembles, we
need to define a kernel and empirical risk minimization
problem that approximates the tree ensemble as closely as

TREX: Tree-Ensemble Representer-Point Explanations

possible. To this end, we use the transformation techniques
from the previous section to define a tree ensemble ker-
nel, and combine it with the empirical risk minimization
methods in the following sub sections.

Kernel Logistic Regression Consider a tree ensemble 7'
trained on a dataset D* = {x%, 3} where ' € R and
y' € {—1,+1} are the predicted labels from 7. We fit a
kernel logistic regression (KLR) model by optimizing the
following dual objective (Yu et al., 2011):

1 L)) .
min iaTQa Z a'loga’ + (C —a')log(C — '),)
i=1

st.0< o’ <C

where C' is a penalty parameter, Q¥ = yiy/k(2?, 27;T)
Vi, j, and k(-,) is one of the kernels from the previous sec-
tion. This allows us to solve for « directly, giving weights to
all training instances. Yeh et al. (Yeh et al., 2018) coin these
terms “representer values”; semantically they represent the
resistance of training instance ' to minimizing the norm of
the weight matrix.

After solving for a, we can decompose the prediction of a
new test instance z! as in equation (1). Thus, we can de-
scribe the contribution of training instance 2° to the overall
prediction as its kernel similarity k(-, z%) weighted by the
its representer value . The resulting value can be positive
or negative, leading to excitatory or inhibitory examples that
contribute towards or away from the predicted label of z.
We end up with an explanation defined in terms of all train-
ing instances, since most of the values in « are non-zero;
for a sparse-solution, we turn to support vector machines.

Support Vector Machine Following the same setup, we
use an SVM (Cortes & Vapnik, 1995) as our empirical risk
minimizer. Again, we optimize the dual objective (Yu et al.,
2011) to find instance weights «:

1)
min §(aT(Q +D)a) —ela,st.0<a’ (3)

where e is a vector of all ones, D is a diagonal matrix, and
D;; = 1/2C,Vi. Since the support vectors of an SVM
are the only instances with non-zero weights, the resulting
explanation is sparse.

4. Experiments

Datasets and Framework Our evaluation uses the fol-
lowing datasets: Churn (n = 7,043, d = 19) (Kaggle,
2018), which tracks customer retention; Amazon (n =
32,769, d = 9) (Kaggle, 2013), where the task is to predict
employee access for certain tasks; Adult (n = 48,842,
d = 14) (Dua & Graff, 2019), a dataset containing informa-
tion about personal incomes; and Census (n = 299, 285,

Table 1. Test Accuracy of GBDT vs. Interpretable Models

Model Churn Amazon Adult Census
GBDT 0.813 0.947 0.868 0.958
LR 0.806 0.940 0.824 0.948
SVM (Linear) 0.806 0.940 0.822 0.946
SVM (RBF) 0.759 0941 0.764 0.938
KNN 0.762 0.939 0.802 0.946

d = 41) (Dua & Graff, 2019), a population survey dataset
collected by the U.S. Census Bureau. The Churn dataset
does not have a predefined train/test split, so we randomly
select 20% to use as a test set.

Our experiments use CatBoost (Prokhorenkova et al., 2018),
an open source implementation of gradient boosted trees.
When training TREX with logistic regression, we use lib-
linear (Fan et al., 2008) on the tree-ensemble feature rep-
resentation to solve the L2 regularized dual problem from
equation (2). For SVMs, we use the SVC solver from liblin-
ear (Pedregosa et al., 2011) to solve equation (3).

Hyperparameter Tuning In our experiments, we mea-
sure predictive performance using accuracy, and we select
the hyperparameters of our tree ensemble by performing
two-fold cross-validation, where we tune the number of
trees and the maximum depth of each tree. To tune the
surrogate model that approximates the tree ensemble, we
randomly select 10% of the training data and select the sur-
rogate model whose predictions have the highest Pearson
correlation to the tree ensemble on this data.

4.1. Tree-Ensemble Performance

First, we verify that tree ensembles are necessary to obtain
good predictive performance on these baselines. In particu-
lar, if other methods that are simpler and easier to interpret
perform just as well, then there is no need to explain a com-
plex tree ensemble. Table 1 shows that gradient boosted
decision trees (GBDTs) are consistently more accurate than
simpler models, justifying the use of a tree ensemble and
the need for methods to explain them.

4.2. Fidelity

To generate explanations, TREX first trains a surrogate
model that approximates the predictive behavior of a tree en-
semble. We compare the fidelity of TREX-KLR and TREX-
SVM to a KNN model built using the tree-ensemble kernel,
which we denote TE-KNN. Figure 3 shows that TREX with
the LeafOutput kernel is able to approximate the tree ensem-
ble very accurately, better than TE-KNN in all scenarios.
The LeafOutput kernel generally had higher fidelity than
the LeafPath and TreeOutput kernels; thus, we focus on the
LeafOutput kernel for the remaining experiments.

TREX: Tree-Ensemble Representer-Point Explanations

> Amazon Adult Census (10%) 0.96 Census
@ 0800 0.950 :
g 0 0.86
5 0.925
0 0.775 = 0.925 0.94
e 0.900 0.84 A
7 < 0.900
b7 0-750 0.875 0.82 0.92
D 0.725 0.875
= 0 10 20 30 0 5 10 15 0 10 20 0 5 10 15 0 5 10 15

% train data checked % train data checked % train data checked % train data checked % train data checked

—— TREX-KLR —e— Random —— KLR Loss MAPLE TE-KNN
TREX-SVM —v— Tree Loss —<— SVM Loss —— LeafInfluence TE-KNN Loss

Figure 2. Change in test accuracy as training points are checked and fixed; the dashed line represents test accuracy before label corruption.
Each experiment is repeated 5 times to obtain standard error bars. LeafInfluence and TE-KNN were too slow in generating predictions for
the Census dataset, so we also include results for a 10% subset of the Census dataset.

0.851 —+— TEKNN
—— TREX-KLR

~
o

I E IR R M
!:,‘.'" H
v

Churn Amazon Churn Amazon
2 1.0 1 . 0.95 1
=z KLR=0.985 P . KLR=0.904 * ! 2 0.0 =
E SVM=0.979 | i 'I SVM=0.838 #3 et 57 0.90{ —+— Random
S 0.5 KNN=0.850 ¢ | { '« KNN=0.599 . E 0.75 MAPLE
2, . Ll .
5 go
) =
o

0.0 ‘ : : : ‘ ‘ ; 0.80
Adult Census Adult Census

21.0 1 0.90 I

g KLR=0.995 KLR=0.994 | & 0.96 ./L\.

S ' I ®© 4

2 SVM=0.979 SVM=0.961 £ 085

S 054 = i {1+ 20, . 3

£05 . KNN 09?3 y KNN 093%‘ i S DA € 080 0.00

= L | :

a : EEE & 0.75

©0.01 7" ‘ ‘ — s ; ; ; ; ; ; ; ; ; 0.92 L ; ; ; ;

0.00 025 050 075 1.00 0.00 025 050 075 1.00 0 20 40 60 80 0 20 40 60 80
Surrogate probability Surrogate probability % train data removed % train data removed

Figure 3. Comparison between a tree ensemble and three surrogate Figure 4. Change in test performance as the training samples with
models: two TREX models and one KNN model, all using the the most positive influence on the test set are removed in 10%
LeafOutput kernel. The numbers in each plot represent the Pearson increments up to 90%.

correlation between the GBDT and surrogate predictions.

Results are shown in Figure 2. On every dataset, TREX-

4.3. Dataset Cleaning KLR and TREX-SVM achieve the highest accuracy for each
o . amount of data checked. In other words, TREX identifies

Datasets often contain missing or noisy labels that can de- ¢ training instances that (after relabeling) have the greatest
grade the performance of a classifier. We can use TREX to impact on the model’s test performance. In contrast, LeafIn-

efficiently identify problematic training instances and rela- fluence, MAPLE, and several other baselines often perform
bel them as appropriate. Following a similar experimental worse than a random ordering.

setup as (Koh & Liang, 2017), we corrupt a training set by
randomly flipping 40% of the training labels and training a
tree ensemble model on the resulting noisy dataset. We then
use TREX to order the training instances to be manually Inspired by a recent approach that measures explanation
checked, fixing them if they had been previously flipped; quality for feature attribution techniques, we adapt the
the model is then evaluated on a held out test set. We take ROAR (RemOve And Retrain) framework (Hooker et al.,
the same approach as (Yeh et al., 2018) and sort the training 2019) from measuring feature importance to measuring the
instances by the absolute value of their weights, . influence of training samples on a set of model predictions.
In this experiment, each method generates and aggregates
instance-attribution explanations for a randomly selected set
of n = 50 test instances, and orders the training data from
most positively influential to most negatively influential.
Then, the training data is removed in 10% increments, where
the best explanatory methods cause the sharpest degradation
in performance. Each experiment is repeated 20 times.

4.4. Remove and Retrain

We compare to the following baseline orderings: Random,
a completely random ordering; Tree Loss, ordered by the
loss of the tree-ensemble predictions; Surrogate Loss, or-
dered by the loss of the surrogate model predictions; TE-
KNN, ordered by neighborhood density; MAPLE (Plumb
et al., 2018), ordered by similarity density; and LeafInflu-
ence (Sharchilev et al., 2018), ordered by the influence of
each training sample on itself (Koh & Liang, 2017). We observe that each dataset is quite robust to the deletion of

TREX: Tree-Ensemble Representer-Point Explanations

Table 2. Average Time (in seconds) to compute the impact of all
training instances on a single test instance. MAPLE did not finish
(DNF) fine-tuning on the Census dataset after running for 12 hours,
so the computation time for that dataset is not applicable (N/A).

Fine-Tune

Model Churn Amazon Adult Census

LeafInf 0 0 0 0

MAPLE 700 5,400 11,500 DNF

TE-KNN 30 530 300 14,300

TREX-KLR 25 110 60 650

TREX-SVM 15 190 90 800

Computation

Model Churn Amazon Adult Census
LeafInf 100 3,500 1,500 29,900
MAPLE 0.031 0.048 0.059 N/A
TE-KNN 0.012 0.438 0.187 1.405
TREX-KLR 0.045 0.556 0.243 2.609
TREX-SVM 0.033 0.457 0.276 2.805

training instances, maintaining relatively high accuracy even
as 90% of the training data is randomly removed (Figure 4).
However, we find that TREX is generally able to find the
training instances that, when deleted, cause the earliest and
largest degradation in model performance. LeafInfluence-
was too inefficient to run (see timing experiments below).

4.5. Runtime Comparison

In this section, we measure the time it takes for each method
to generate an instance-attribution explanation for a single
random test instance. We compare TREX to LeafInflu-
ence (using its fastest setting); we also compare against
MAPLE and TE-KNN. The measurement is broken up into
fine-tune and computation costs. Fine-tuning is a one-time
cost to setup the explainer (tuning any hyperparameters and
training the explainer), while computation is the time it
takes to use the explainer to generate an explanation for a
new test instance. Each experiment is repeated five times.

TREX incurs a relatively modest one-time fine-tuning cost
to train the kernelized model, roughly 1-2 orders of magni-
tude faster than MAPLE. After this step, TREX is able to
quickly generate an explanation for a test instance, roughly
3-4 orders of magnitude faster than LeafInfluence. Our ap-
proach is fast enough to generate instance-attribution expla-
nations in real time for individual queries, or even for groups
of training and test instances, as shown in Section 4.4.

4.6. Case Study: Detecting Dataset Shift

To evaluate the utility of TREX in explaining individual pre-
dictions, we created a domain mismatch within the Adult
dataset. In the original training set, all 395 people under the
age of 18 are labeled as making less than or equal to $50K

Unweighted

-1.0 -0.5 0.0 0.5 1.0 20 40 60 80

a Age
lel Weighted by a lel Weighted by a*y
2.5 i
1 @ pos samples
% 0.0 i~ 2N ‘E’ ™ neg samples
£ o A NN =}
g Tou g
-25 i 01
20 40 60 80 20 40 60 80
Age Age

Figure 5. Detecting shift in the Adult dataset. Top-left: repre-
senter value « and similarity + of each training point to a chosen
test point. Top-right: histogram of positive and negative training
examples in each age range. Bottom-left: same, multiplied by «.
Bottom-right: same, multiplied by the product of « and ~.

per year (negative). We reduced that set to 98 people and
flipped 83 of the labels, so that 83 out of 98 17-year-olds
in the training data are positive. This inevitably caused in-
correct predictions in the test set, where 17-year-olds were
predicted to have incomes over $50K per year. We then
selected one of these incorrect predictions and used TREX-
KLR! with the LeafOutput kernel to help explain it. In
Figure 5, we first plot the representer value «v and similarity
to the test point «y for each training example (Top-left). We
see a clump of high-similarity points, along with a few other
outliers. All 97 points with v > 2.0 have age=17.

Investigating further, we show the distribution of the age
attribute in three histograms. In the overall dataset (Top-
right), most examples with low age (< 25) are negative.
After weighting by o (Bottom-left), their contribution to the
overall model is small but positive. However, for this one
test example (Bottom-right), these same points make a very
large, positive contribution, explaining the final prediction
of a positive label.

5. Conclusion

In this work we have developed TREX?, a method of ex-
plaining tree ensemble predictions via the training data. We
extended the representer point framework (Yeh et al., 2018)
to work for non-differentiable tree ensembles by exploiting
the tree-ensemble structure to create a new tree-based kernel,
from which we can train a kernelized model. We demon-
strated that this model is capable of closely approximating
the predictive behavior of the tree ensemble, and can be
used to aid in dataset debugging and help better understand
model behavior.

"We see similar results with TREX-SVM.
2https ://github.com/jjbrophy47/trees

https://github.com/jjbrophy47/trees

TREX: Tree-Ensemble Representer-Point Explanations

References

Bloniarz, A., Talwalkar, A., Yu, B., and Wu, C. Supervised
neighborhoods for distributed nonparametric regression.
In Artificial Intelligence and Statistics, pp. 1450-1459,
2016.

Breiman, L. Random forests. Machine learning, 45(1):
5-32, 2001.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785-794. ACM, 2016.

Cook, R. D. and Weisberg, S. Characterizations of an em-
pirical influence function for detecting influential cases
in regression. Technometrics, 22(4):495-508, 1980.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine learning, 20(3):273-297, 1995.

Davies, A. and Ghahramani, Z. The random forest kernel
and other kernels for big data from random partitions.
arXiv preprint arXiv:1402.4293, 2014.

Dua, D. and Graff, C. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2019.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. Liblinear: A library for large linear classifi-
cation. Journal of Machine Learning Research, 9(Aug):
1871-1874, 2008.

Friedman, J. H. Greedy function approximation: a gradient
boosting machine. Annals of statistics, pp. 1189-1232,
2001.

He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y.,
Atallah, A., Herbrich, R., Bowers, S., et al. Practical
lessons from predicting clicks on ads at facebook. In
Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising, pp. 1-9. ACM, 2014.

Hooker, S., Erhan, D., Kindermans, P.-J., and Kim, B. A
benchmark for interpretability methods in deep neural
networks. In Advances in Neural Information Processing
Systems, pp. 9734-9745, 2019.

Kaggle. Amazon.com - employee access chal-
lenge. https://www.kaggle.com/c/
amazon—-employee—access—challenge/data,

2013. [Online; accessed 28-April-2020].

Kaggle. Dataset surgical binary classification.
https://www.kaggle.com/omnamahshivai/

surgical-dataset-binary-classification,
2018. [Online; accessed 16-April-2020].

Kazemitabar, J., Amini, A., Bloniarz, A., and Talwalkar,
A. S. Variable importance using decision trees. In Ad-
vances in Neural Information Processing Systems, pp.
426-435. Curran Associates, Inc., 2017.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. LightGBM: A highly efficient
gradient boosting decision tree. In Advances in Neural
Information Processing Systems, pp. 3146-3154. Curran
Associates, Inc., 2017.

Koh, P. W. and Liang, P. Understanding black-box pre-
dictions via influence functions. In Proceedings of the

34th International Conference on Machine Learning, pp.
1885-1894. JMLR, 2017.

Lundberg, S. M. and Lee, S.-I. A unified approach to in-
terpreting model predictions. In Advances in Neural
Information Processing Systems, pp. 4765-4774, 2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. Journal of machine learning research,
12(Oct):2825-2830, 2011.

Plumb, G., Molitor, D., and Talwalkar, A. S. Model agnostic
supervised local explanations. In Advances in Neural
Information Processing Systems, pp. 2515-2524. Curran
Associates, Inc., 2018.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A. Catboost: unbiased boosting with categor-
ical features. In Advances in Neural Information Pro-
cessing Systems, pp. 6638—6648. Curran Associates, Inc.,
2018.

Ribeiro, M. T., Singh, S., and Guestrin, C. Why should I
trust you?: Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, pp.
1135-1144. ACM, 2016.

Scholkopf, B., Herbrich, R., and Smola, A. J. A general-
ized representer theorem. In International conference on
computational learning theory, pp. 416-426. Springer,
2001.

Sharchilev, B., Ustinovskiy, Y., Serdyukov, P., and de Ri-
jke, M. Finding influential training samples for gradient
boosted decision trees. In Proceedings of the 35th In-
ternational Conference on Machine Learning, pp. 4577—
4585, Stockholmsmaissan, Stockholm Sweden, 10-15
Jul 2018. PMLR. URL http://proceedings.mlr.
press/v80/sharchilevl8a.html.

http://archive.ics.uci.edu/ml
https://www.kaggle.com/c/amazon-employee-access-challenge/data
https://www.kaggle.com/c/amazon-employee-access-challenge/data
https://www.kaggle.com/omnamahshivai/surgical-dataset-binary-classification
https://www.kaggle.com/omnamahshivai/surgical-dataset-binary-classification
http://proceedings.mlr.press/v80/sharchilev18a.html
http://proceedings.mlr.press/v80/sharchilev18a.html

TREX: Tree-Ensemble Representer-Point Explanations

Yeh, C.-K., Kim, J., Yen, I. E.-H., and Ravikumar, P. K.
Representer point selection for explaining deep neural
networks. In Advances in Neural Information Processing
Systems, pp. 9291-9301. Curran Associates, Inc., 2018.

Yu, H.-F.,, Huang, F.-L., and Lin, C.-J. Dual coordinate
descent methods for logistic regression and maximum
entropy models. Machine Learning, 85(1-2):41-75, 2011.

