[ Back to the tutorial's main page ]
Reading List
Tutorial/review papers
Methods for DNN interpretability
-
K. Simonyan, A. Vedaldi, A. Zisserman:
Deep inside convolutional networks: Visualising image classification models and saliency maps.
ICLR 2014
-
A. Mahendran, A. Vedaldi:
Visualizing Deep Convolutional Neural Networks Using Natural Pre-images.
International Journal of Computer Vision 120(3): 233-255 (2016)
-
A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, J. Clune:
Synthesizing the preferred inputs for neurons in neural networks via deep generator networks.
NIPS 2016: 3387-3395
-
C. Olah, A. Mordvintsev, L. Schubert:
Feature Visualization.
Distill, 2017
-
M.T. Ribeiro, S. Singh, C. Guestrin:
"Why Should I Trust You?": Explaining the Predictions of Any Classifier.
KDD 2016: 1135-1144
-
S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, W. Samek:
On Pixel-wise Explanations for Non-Linear Classifier Decisions by Layer-wise Relevance Propagation.
PLOS ONE, 10(7): e0130140 (2015)
-
M. Zeiler, R. Fergus:
Visualizing and understanding convolutional networks.
ECCV 2014: 818–833
-
G. Montavon, S. Lapuschkin, A. Binder, W. Samek, K.-R. Müller:
Explaining nonlinear classification decisions with deep Taylor decomposition.
Pattern Recognition 65: 211-222 (2017)
-
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba:
Learning Deep Features for Discriminative Localization.
CVPR 2016: 2921-2929
-
K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio:
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.
ICML 2015: 2048-2057
-
J. Donahue, L. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama, K. Saenko, T. Darrell:
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description.
IEEE Trans. Pattern Anal. Mach. Intell. 39(4): 677-691 (2017)
-
S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee:
Generative Adversarial Text to Image Synthesis.
ICML 2016: 1060-1069
Evaluating interpretability techniques
Model validation / understanding computer reasoning
-
R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad:
Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission.
KDD 2015: 1721-1730
-
M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L. Jackel, U. Muller:
Explaining How a Deep Neural Network Trained with End-to-End Learning Steers a Car.
CoRR abs/1704.07911 (2017)
Interpretability for the Sciences
-
D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, K.-R. Müller:
How to Explain Individual Classification Decisions.
Journal of Machine Learning Research 11: 1803-1831 (2010)
-
P.M. Rasmussen, L.K. Hansen, K.H. Madsen, N.W. Churchill, S. Strother:
Model sparsity and brain pattern interpretation of classification models in neuroimaging.
Pattern Recognition 45(6): 2085-2100 (2012)
-
K.T. Schütt, F. Arbabzadah, S. Chmiela, K.-R. Müller, A. Tkatchenko:
Quantum-Chemical Insights from Deep Tensor Neural Networks
Nat. Commun. 8, 13890, 2017.